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Abdominal aortic aneurysm (AAA), a localized dilation of the infrarenal aorta, represents a 

significant disease in the western population.  There are approximately 200,000 patients in the 

US and 500,000 patients worldwide diagnosed with AAAs every year, and rupture of AAAs 

currently ranks as the 13th leading cause of death in the US.  The formation of aneurysm within 

the abdominal aorta presents a unique clinical dilemma, requiring surgeons to offer intervention 

when the risks of rupture outweigh those associated with the repairing the AAA.  The gold 

standard for quantitatively assessing a AAAs risk of rupture is the maximum transverse diameter 

– with intervention typically recommended at a diameter of 5.5cm.  This criterion, however, is 

not based on the sound physical properties governing the mechanical failure of the AAA wall – 

the stresses acting on the wall and the ability to withstand those stresses (its strength).  The 

current work describes the continued improvement of a rupture potential index (RPI) which is 

defined as the ratio of local wall stress and strength. 

The effect of mechanical anisotropy on the constitutive modeling and finite element 

analyses of AAA has been neglected in the literature.  In order to address the assumption of 

isotropy, planar biaxial tensile testing was performed on AAA wall and intraluminal thrombus 

(ILT) tissue excised from patients undergoing elective open repair of their AAA.  The peak 

stretch values and maximum tangential moduli for AAA versus nonaneurysmal tissue indicate a 

preferential circumferential stiffening of the abdominal aorta in the presence of aneurysm.  It was 

concluded that aneurysmal degeneration of the abdominal aorta is associated with an increase in 

mechanical anisotropy, with preferential stiffening in the circumferential direction.  This 

anisotropy was modeled using an exponential strain energy function which was able to minimize 

the covariance between model parameters. Implementation of this relation into a commercially 

available finite element code (ABAQUS) resulted in a more realistic estimation of in-vivo wall 

stress.  There was a significant increase in peak wall stress in AAAs utilizing the anisotropic 
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constitutive relation versus those using the previously derived isotropic relation (38.30 ± 3.04, 

36.06 ± 2.73, p<0.001).  This result was not universal, however, indicating the presence of 

anisotropy on peak wall stress may be patient-specific.   

Previous work in our laboratory resulted in an initial statistical model for noninvasively 

estimating AAA wall strength.  This model has currently been improved with several notable 

enhancements some of which include a larger construction data set and a CT-based method of 

local diameter measurement.  This model contains four, non-invasively measurable predictors: 

the square root of local ILT thickness, normalized local diameter, patient’s sex, and the patient’s 

family history of AAA.  The noninvasive statistical model for predicting AAA wall strength 

derived here predicted a statistically weaker wall for ruptured AAAs than for non-ruptured 

AAAs (119.41 ± 4.48 and 137.06 ± 1.49 N/cm2, p=0.02).  In fact, the current model performed 

better than either the previously derived AAA wall strength model or the clinically utilized 

maximum cross sectional diameter in identifying ruptured AAAs.  The currently developed 

rupture potential index resulted in an increased peak value of RPI for a set of electively repaired 

AAAs in comparison to the previously developed RPI technique (0.34 ± 0.03 vs. 0.22 ± 0.03, p < 

0.001).  In addition, comparisons of peak RPI values for ruptured and non-ruptured AAAs 

suggest an improvement in rupture prediction utilizing the current methodology (p=0.10) as 

opposed to the previously developed RPI (p=0.79) as well as the maximum diameter criterion 

(p=0.17).   

The locally acting AAA wall stress divided by the local AAA wall strength, termed the 

rupture potential index, has been introduced as an alternative to the maximum diameter criterion 

for AAA rupture assessment.  The clinical relevance of this method for rupture assessment has 

yet to be validated, however its success will undoubtedly aid surgeons in clinical decision 

making and AAA patient management. 
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1.0 INTRODUCTION AND BACKGROUND 

 

 

Abdominal aortic aneurysms (AAA) are the local dilation of the abdominal aorta, occurring in 

the region of the aortic tree distal to the renal arteries and proximal to the aortic bifurcation 

(Figure 1-1).  This dilation of the aorta occurs over a time course of several years, with an 

average expansion rate of 2.6 mm/yr1.  Typically, a person’s aorta is considered aneurysmal 

when its maximum transversal diameter increases by 50% of the expected diameter, which may 

vary according to the patients age, sex, and body weight.[1]  Patients with AAA will often times 

be asymptomatic, making the detection and prevention of this disease difficult.  AAAs will 

continue to grow until the vessel ruptures or the patient succumbs to a comorbid condition.  Each 

year, approximately 15,000 people in the United States die of a ruptured abdominal aortic 

aneurysm, which makes it the 15th leading cause of death in this country[2, 3].   

 

1 



 

 

 

Figure 1-1:  Anatomical depiction of an AAA displaying the dilation at the abdominal level 
(taken from www.endovascualar.net) 
 

 

1.1  DEMOGRAPHICS 

 

The formation of abdominal aortic aneurysm is primarily a disease of the elder male ages 50 

years and above.  The incidence of AAA is 4 to 6 times greater in men than women, with this 

difference dissipating after the 8th decade of life [4, 5].  This being said, the annual risk of 

rupture for females was recently shown to be 3 times that for males [6].  Aneurysmal disease 

primarily occurs in the white race, as shown in a recent study utilizing the Nationwide Inpatient 

2 

http://www.endovascualar.net/


 

Sample of 1994-1996 [7] (Table 1).  This table also outlines the preference of this disease to the 

male aged 60 years and above. 

 

Table 1-1:  Patient demographical data from a random sampling in the US[7] 

 
 

Patient Demographics 7 

Age  

50-59 y 960 (5.8%) 

60-69 y 5,228 (31.8%) 

70-79 y 7,965 (48.4%) 

Male 13,114 (79.70%) 

Female 3,340 (20.3%) 

White 13,009 (94.7%) 

Black 286 (2.1%) 

Other race 450 (3.3%) 

 

 

1.2  CLINICAL TREATMENT 

 

1.2.1    Open AAA Repair 
 

DuBost et al. reported the first open surgical repair of AAA in 1952 [8].  This surgery involves a 

large anterior incision with the exclusion of the AAA via a graft sewn inside the intra-
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aneurysmal sac (Figure 1-2).  Once the body of the AAA is opened up, the intra-luminal 

thrombus (ILT), which occurs in 75% of AAAs, is removed.  Either a straight tube or a 

bifurcated tube graft is then anastamosed to the proximal and distal interior of the abdominal 

aorta.  Following the reestablishment of blood flow, the AAA wall is then sewn back around the 

graft and the patient is closed.  Over the past 30 years, the elective repair of AAA via open 

surgical techniques has resulted in a decrease in mortality and morbidity rate from 20% to 5% 

[9], largely due to advances in surgical, anesthetic, and intensive care techniques.  The emergent 

open repair of AAA, however, results in a much higher morbidity and mortality rate, typically 

around 50% [10-12].  Given the relative success of open AAA surgery in the elective setting, this 

remains the gold standard for treatment of AAAs larger than 5.5cm in diameter. 

 

 

 

Figure 1-2:  Traditional open repair of AAA with large anterior incision (adapted from 
www.guidant.com) 
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1.2.2   Endovascular Repair of AAA 
 

A less invasive endovascular treatment for the exclusion of AAAs was introduced early in the 

last decade by Carlos Parodi in South America [13].  This procedure involves the insertion of an 

endoluminal graft into the femoral artery and its gradual advancement and deployment in the 

abdominal region (Figure 1-3).  Endovascular repair (EVAR) has grown in  

 

 

igure 1-3:  Placement (left) and resulting endovascular graft (right) (adapted from 
www.medtronic.com
F

) 

popularity due to its noninvasive nature [12].  The most commonly reported benefits of EVAR 

 

 

compared to the traditional open repair are a decrease in blood loss, a decrease in hospital stay, 

and fewer complications [14-16].  Indeed, for a recently reported clinical trial the average 

recovery times in the hospital for open repair were statistically larger than that for EVAR [17].  

EVAR is not without its caveats, however.  Because it is a relatively new procedure, the long-

term benefits of this procedure are yet to be discovered [14-16].  In addition, currently available 
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endovascular grafts are also associated with several mechanisms of failure, including graft 

migration and endoleak.  Type I endoleak occurs when the seal between the graft and the aorta is 

not complete, allowing blood to flow from the lumen to the aneurysmal sac.  Type I endoleaks 

can occur at proximal or distal attachment sites, and have been correlated to short aneurysm neck 

[18], large vessel diameter [19], aneurysm neck angulation [20], and tortuosity of the iliac 

arteries [21].  Type II endoleaks are a result of retrograde flow from small arteries such as the 

lumbars or the inferior mesenteric artery (IMA).  Type III endoleaks are due to a graft defect, 

either a separation of a modular graft or a hole in the graft.  Type IV endoleaks are caused by 

fabric porosity and usually subside within 30 days [22].  All forms of endoleak result in 

endotension – the increase in pressure within the aneurysmal sac – which increases the risk of 

AAA rupture.  In addition to the mechanisms of failure for EVAR, this procedure is limited to 

patients whose aortic geometry are amenable to this procedure.  Specifically, those patients 

whose aortas are highly tortuous or who present with a very small neck region are typically 

declined the EVAR approach and offered the open surgical repair [18-21]. In addition to device 

complications and patient selection, the comparatively high cost of the endovascular graft is 

prohibiting this procedure from providing a large decrease in the cost of AAA repair.  Despite its 

noted disadvantages, the design of new EVAR devices as well as the increasing experience of 

surgeons with EVAR over the next few decades may eventually render it the mainstay for the 

treatment of AAA. 
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1.3  A BIOMECHANICAL APPROACH 

 

1.3.1   The Surgeon’s Dilemma 

rrent repair techniques, it is important to determine when, 

during the course of an aneurysm, the risk of rupture justifies repair.  That is, only those patients 

who are of high risk of suffering AAA rupture should be offered repair. However, there is no 

currently accepted technique available to quantify the risk of rupture for individual AAA. 

Presently, the decision for elective repair of AAA is based on the maximum diameter of the 

aneurysm.  Typically, when the AAA reaches 5-cm in diameter, it is thought that risk of rupture 

warrants repair [23-25].  This “5-cm diameter criterion” is only a rule-of-thumb and is, in 

general, unreliable (Table 1-2

 

Given the limitations and risks of cu

) [23, 25].  Autopsy studies have shown that up to 23% of AAAs 

rupture at a diameter less than 5 cm [26, 27], while up to 66% of the  

 

Table 1-2:  Relationship of size to rupture in 473 nonresected AAA (adapted from Darling et 
al.[23]) 

Size (cm) Ruptured Unruptured Total % Ruptured 
 

≤ 5.0 34 231 265 12.8 

> 5.0 78 116 194 40.0 

No Size 
Recorded 

1  3  

6 8 14 43.0 

Total 18 55 473 24.9 
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aneurysms between 5 cm and 10 cm will not rupture, given the life expectancy of the patient.  

Therefore, surgery based on the 5-cm diameter criterion may be offered too late or may not be 

necessary for a certain group of patients.  Clearly, the ability to reliably evaluate the 

susceptibility of a particular AAA to rupture on a patient-specific basis could vastly improve the 

clinical management of these patients. 

 

1.3.2   Rupture Potential Index 

The reason that the “5-cm diameter criterion” to evaluate AAA severity is so unreliable is that it 

dividual characteristics of an aneurysm. AAA rupture 

assessment is not a “one-size-fits-all” process.  From a purely mechanical point of view, rupture 

of AAA occurs when the mechanical stresses (internal forces per unit area) acting on the 

aneurysm exceed the ability of the wall tissue to withstand these stresses (i.e., the wall's failure 

strength).  Our previous observations show that AAA formation is accompanied by an increase 

in wall stress [28, 29], as well as a corresponding decrease in wall strength [30-32]. Despite 

recent reports [33, 34], it should be noted that evaluation of rupture potential based on only one 

of these parameters – stress or strength – is not sufficient since a region of the AAA wall that is 

under elevated wall stress may also have higher wall strength, thus equalizing its rupture 

potential. Based on principles of material failure, rupture instead is most likely where the ratio of 

stress to strength is highest.  Nonetheless, it is interesting to note from a recent retrospective 

study using an earlier version of our wall stress evaluation techniques that consideration of even 

peak wall stress alone suggests an improvement over the “5-cm diameter criterion” [33, 35].  

Clearly, the ability to non-invasively predict the locally acting wall stress and wall strength for 

 

does not take into account other in
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AAAs on a patient-specific basis will provide a more appropriate diagnostic tool for isolating 

those AAAs who are at high risk of rupture. Our laboratory has proposed the use of a new index 

for the detection of high risk AAAs, which is based on the noninvasive prediction of patient-

specific AAA wall stress and wall strength.  The rupture potential index (RPI) of an AAA can be 

defined as the ratio of the locally varying wall stress to the wall strength: 

)1.1(                                                 Stress AAA WallRPI =  
Strength AAA Wall

The range of the RPI index is from zero to one, with one being zero chance of AAA rupture, and 

one being imminent rupture.  It is important to note that both the stress and the strength acting on 

1.4  HYPOTHESIS AND SPECIFIC AIMS 

 

The purpose of the propose  patient-specific AAA 

odels by the implementation of a biaxial constitutive relation for AAA wall and ILT into finite 

the AAA wall may vary spatially, so that the RPI inherently has the ability to determine not only 

high risk aneurysms, but also the region within the aneurysm that is at highest risk.  The 

development of the RPI as an index for determining the risk of AAA rupture on a patient-specific 

basis may improve the diagnosis and treatment of this disease. 

 

 

d research is to improve the RPI calculation for

m

element simulations as well as the inclusion of a more robust wall strength model.  Therefore, 

there are three primary hypotheses that will be addressed in the current work: 
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Hypothesis #1 – The utilization of a biaxially-derived constitutive relation for the AAA wall and 

intra-luminal thrombus into patient-specific finite element simulations of AAA will alter the 

peak stress as well as the distribution of stresses within a given AAA. 

Hypothesis #2 – An increased dataset and more appropriate data collection and statistical 

analyses will improve the estimation of AAA wall strength. 

Hypothesis #3 – The inclusion of the improved estimates of wall stress and wall strength will 

result in an RPI that can better identify those AAAs that are at high risk of rupture. 

 

The above hypotheses will be tested with the following specific aims: 

 

Specific Aim #1 - Determine an accurate biaxial hyperelastic constitutive equation for non-

aneurysmal and aneurysmal human abdominal aorta, and intra-luminal thrombus. 

To the author’s knowledge, there has been no report of the biaxial mechanical properties of 

human nonaneurysmal and aneurysmal abdominal aorta in the literature.  This deficiency 

prohibits the direct insertion of such data into 3D finite element simulations of these tissues.  For 

these reasons, biaxial tensile testing of nonaneurysmal and aneurysmal abdominal aorta, as well 

as ILT will be performed using a well-documented and well-validated device [36, 37].  

Nonaneurysmal aortic tissue will serve as age-matched controls for the AAA tissue.  Assuming 

these tissues are incompressible and undergo large deformations in-vivo, a suitable strain energy 

function (W) will be chosen and applied to each material.  Because it is desired to derive a 

constitutive relation for AAA wall and ILT that will be suitable to estimate the patient-wide 

multiaxial mechanical response of all AAA, a single (averaged) set of material parameters will 

be determined for each of these tissues.  

10 



 

 

Specific Aim #2 - Implement the new constitutive models into patient-specific finite element 

models of AAA. 

The biaxial material model for AAA wall and ILT derived in Specific Aim #1 will be 

implemented into the finite element software Abaqus Inc. (HKS, 2003).  The first step will be to 

simulate biaxial tensile tests from a specific AAA wall and ILT specimen using parameters 

derived experimentally from each specimen.  The second step will be to compare these 

specimen-specific results to simulations in which the group AAA wall and ILT material 

parameters derived in Specific Aim #1 are used.  The next step of this aim will be to assess the 

improvement of using the biaxial AAA wall and group material parameters as compared to the 

isotropic, uniaxially-derived material parameters used previously by our lab [38].  Finally, the 

population-wide biaxial constitutive relations for AAA wall and ILT will be taken from a 2D 

boundary condition setting and translated into a fully 3D constitutive relation applicable to 3D 

patient-specific AAA geometry. 

  

Specific Aim #3 - Improve the mathematical model for the prediction of spatially-varying AAA 

wall strength. 

Prior research by our laboratory has led to the formulation of a statistically-based mathematical 

model for the prediction of local wall strength [39, 40].  Using a step-down statistical procedure, 

it was found that the local ILT thickness, patient age, local normalized diameter, and patient 

family history of AAA disease each have a significant affect on local AAA wall strength.  The 

previous approach, however, used an awkward and potentially inaccurate ex-vivo procedure to 

measure local ILT thickness.  Moreover, this model is hard to build on, since the experimental 
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procedure previously used to calculate ILT thickness was extremely user-dependent.  The 

relatively small range of variables used in the construction of the model also limits its clinical 

utilization to a wide range of AAAs.  This specific aim, therefore, is designed to derive a new 

AAA wall strength model using similar statistical procedures as the previous approach but using 

a larger range of input variables, a more reliable calculation of local ILT thickness and local 

diameter, and a larger wall strength dataset. 

 

Specific Aim #4 - Compare the RPI for AAAs using the previous estimation techniques of stress 

and strength distributions with that using the revised techniques 

Once Specific Aims #1 through #3 above were completed, the final aim was to compare the RPI 

of patient specific AAAs using the previously derived stress and strength models with the RPI of 

the same patient specific AAAs using the new stress and strength distributions.  The updated 

stress and strength distributions will be separately compared to their previous counterparts so the 

effect of each component on the RPI can be fully realized.  The magnitude of the minimum, 

maximum, and average stress, strength, and RPI values that occur will be recorded and 

compared.  Finally, the RPI distributions of patients undergoing elective AAA repair will be 

compared with the RPI distributions of a set of patients who’s AAA eventually ruptured. 
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2.0 BIAXIAL TESTING OF AAA AND NONANEURYSMAL AORTIC TISSUE 

 

 

2.1 INTRODUCTION 

 

One of the first biaxial tensile testing experiments was performed by Lanir and Fung [41, 42] 

when they investigated the biaxial mechanical response of rabbit skin.  Many other investigators 

have used biaxial tensile testing devices to study a wide variety of biological tissues including 

canine diaphragm[43], aorta[44], saphenous vein [45], pulmonary arteries [46], as well as 

porcine intestinal submucosa [47], heart valve [48], and rat bladder wall [49].  Sacks et al. was 

the first to include the measurement of in-plane shear strains in their biaxial tensile testing 

device. [36]  This device is that being used in the current study.  To the author’s knowledge, the 

only ex-vivo biaxial tensile testing experiments reported for human aortic tissue were the biaxial 

inflation tests on descending thoracic aorta by Mohan et al. [50], the inflation tests on human 

iliac arteries by Schulze-Bauer et al. [51], and the planar biaxial testing of human ascending 

thoracic aneurysm tissue reported by Okamoto et al. [52] The Okamoto et al. manuscript 

represents the first report of the planar biaxial response of aneurysmal tissue.  Given the small 

number of these initial studies, there clearly exists a large deficiency in the literature concerning 

the biaxial mechanical response of human aortic tissue, especially in the nonaneurysmal and 
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aneurysmal segment of human infrarenal abdominal aorta.  The biaxial tensile testing reported 

for the current research will serve in part to complete this portion of the literature. 

The biomechanical response of human AAA, as well as nonaneurysmal abdominal aorta 

(AA), to uniaxial loading conditions has been previously reported by our laboratory and others. 

[30, 38, 53, 54] However, mechanical data derived from uniaxial tensile testing is insufficient for 

the characterization of its multi-axial mechanical response.  Yet, most 3D stress analysis models 

of AAA reported in the literature have been based on previous uniaxial tensile testing data.[28, 

33-35, 55]  Clearly, multi-axial mechanical evaluation would allow for more appropriate 

modeling of aneurysmal tissue, especially given the extent of mechanical anisotropy already 

quantified for human aortic tissue in the literature.[51, 52]  The biaxial mechanical response of 

the human abdominal aorta may be even more important in the presence of aneurysm, in which 

the multi-axial loading of the vessel is pronounced due to its anterior bulging. (Figure 2-1)  In 

addition, the inclusion of the biaxial mechanical response for aneurysmal aorta to the literature 

may lead to a better understanding of the progression and structural manifestations of this 

disease.   Yet, to date there is no extant data on the biaxial mechanical response of AAA tissue. 

In the current investigation, biaxial tensile testing was performed on human AAA and AA tissue 

in order to characterize the biaxial mechanical response of both tissue types and to gain insight 

into differences between them.  It should be noted that this work has previously been published 

(see Vande Geest et al. [56, 57]). 
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Figure 2-1:  Biaxial loading condition of abdominal aorta pronounced by aneurysmal 
dilation 

 

 

2.2  METHODS 

 

2.2.1  Biaxial Tensile Testing Device 
 

The biaxial tensile testing device utilized in the current study has been detailed previously. [36, 

37]  Simply stated, this device allows for the simultaneous recording of load and marker 

displacement on planar biological soft tissues.  The device consists of two orthogonally  

placed load cells and motion carriages, a saline bath for specimen saturation, and a CCD camera 

for the simultaneous measurement of marker displacement. (Figure 2-2)   The typical 

dimensions for a biaxial specimen are 15 mm along each orthogonal edge and a thickness of 2 

mm, providing a state of plane stress within the specimen.  The four markers used for strain 
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measurement typically make a 3 mm x 3 mm square at the center of the specimen.  A typical 

AAA biaxial specimen is shown in Figure 2-3. 

Figure 2-2:  Biaxial tensile testing setup.  Adapted from Sacks and Sun (2003)[58] 

 

 

 

Figure 2-3:  Typical AAA biaxial specimen 
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2.2.2   Specimen Procurement 
 
 

2.2.2.1 Specimen Source 
 
 
Nonaneurysmal Human Abdominal Aorta.  A total of 18 human infrarenal nonaneurysmal 

abdominal aortic samples were harvested from either autopsy subjects (N=11) or organ donors 

(N=7) according to University of Pittsburgh Institutional Review Board guidelines.  It should be 

noted that all of the organ donor specimens were retrieved from donors for recipients of kidney 

transplant, each of which was brain dead due to traumatic injury.  The cause of death for each of 

the autopsy subjects is reported in Tables 2-1, 2-2, 2-3.  The ages of all subjects ranged from 19 

to 75 years, with 5 subjects being less than 30 years (Group 1), 7 subjects between 30 and 60 

years (Group 2), and 6 subjects over 60 years (Group 3).   

 

Table 2-1:  Age and source of death for Group 1 specimens 

 
 

Group 1 <30 yrs 

Specimen Age Source/Cause of death 

1 19 Organ donor for kidney transplant 

2 22 Organ donor for kidney transplant 

3 23 Organ donor for kidney transplant 

4 25 Multi-organ system failure/sickle cell anemia 

5 26 Heart transplant rejection 
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Table 2-2:  Age and source of death for Group 2 specimens 

 
Group 2   30<AGE<60 yrs 

Specimen Age Source/Cause of death 

6 35 Organ donor for kidney transplant 

7 39 Cryptococcal meningitis 

8 47 Allergic reaction/sepsis 

9 47 Organ donor for kidney transplant 

10 47 Organ donor for kidney transplant 

11 50 Heart transplant rejection 

12 50 Organ donor for kidney transplant 

 

 

Table 2-3:  Age and source of death for Group 3 specimens 

 
Group 3  >60 yrs 

Specimen Age Source/Cause of death 

13 61 Abdominal surgical complication/sepsis 

14 66 Multi-organ system failure/cirrhosis 

15 69 Acute respitory distress syndrome/myocardial infarction

16 71 Multi-organ system failure/pneumonia 

17 75 Cerebral aneurysm 

18 75 Metastatic uterine carcinoma 
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Human Descending Thoracic Aorta.  Seven pairs of human descending thoracic (DTA) and 

abdominal aorta (AA) were harvested from autopsy within 24 hours of death, following NIH and 

IRB guidelines.  The age range of all specimens tested was 25 to 66 years of age.  The specimens 

were split into three groups according to age: Group 1 (<30 yrs old), Group 2 (>30 but <60 yrs 

old), and Group 3 (>60 yrs old). 

 

Abdominal Aortic Aneurysm.  All AA and AAA tissue specimens were retrieved according to 

University of Pittsburgh Institutional Review Board guidelines.  AAA samples were obtained 

from open surgical aneurysm repair, primarily from the anterior portion of the aneurysm.  Age-

matched (> 60 yrs of age) AA tissue samples were harvested from autopsy within 24 hours of 

death.   

 

Intra-luminal Thrombus.  All ILT specimens were harvested from patients undergoing elective 

open AAA repair according to University of Pittsburgh Institutional Review Board guidelines.  A 

previous study by our laboratory detailed three distinct layers present in the ILT (luminal, 

medial, and abluminal), highlighting the strong heterogeneity of this material as a whole [59].  

The luminal layer of the ILT was isolated from the medial and abluminal layers by gentle 

peeling. 

     

2.2.2.2 Specimen Storage 
 
All samples were stored in 0.9% saline in a 4° C refrigerator [60] and tested within 48 hours 

from harvest.  Square specimens approximately 2cm x 2cm in dimension were cut such that the 

longitudinal and circumferential orientations of the aorta were parallel with the square edges.  It 
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should be noted that the aortic wall specimens were cut from a region of the infrarenal aorta 

where there was minimal atherosclerotic lesions and calcification.  The loose connective tissue 

on the adventitial side of each aortic wall specimen was removed and the thickness of all 

specimen types were measured at six different locations with a dial caliper and averaged.  The 

unloaded dimension of the specimen in the circumferential (Xθ) and longitudinal (XL) directions 

were also measured and recorded.   

 

2.2.3 Biaxial Protocol 
 

Details of the methods for the biaxial tensile testing procedures and analyses used here have been 

reported previously [37, 56, 57, 61].  Briefly, the square specimens were mounted in a biaxial 

tensile testing device using four nylon sutures hooked to each side of the square specimen with 

surgical staples.  The nylon sutures were connected to specially designed carriages that allow for 

self-equilibrated loads for each suture line.  The specimen was mounted so that it was stretched 

along the circumferential (θ) and longitudinal (L) directions. Four markers were placed in a 

square fashion in the center of the testing specimen, and a CCD camera was used to capture 

marker displacement during loading.  The specimen was tested using a tension-controlled 

protocol, where the ratio of axial tensions Tθθ:TLL were kept constant during loading.  The 

following protocols were used in the order listed: Tθθ:TLL=1:1, 0.75:1, 1:0.75, 0.5:1, 1:1, 1:0.5, 

1:1, 0.1:1.0, and 1.0:0.1 (Figure 2-4).   The multiple equibiaxial tension protocols (i.e. Tθθ:T-

LL=1:1) were performed throughout the test to ensure no structural damage occurred as a result of 

the mechanical testing.   

The maximum tension value used for each nonaneurysmal and aneurysmal wall specimen 

was 120 N/m, which is the tension in a thin cylindrical tube, of a diameter (2 cm) and thickness 
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(2mm) consistent with that of the typical abdominal aorta, exposed to a physiological pressure 

(113 mmHg).  The maximum tension value used for each ILT specimen was 40 N/m.  This value 

was determined in preliminary experiments in our laboratory to be the maximum tension the 

luminal ILT can withstand in the biaxial tester without the surgical staples detaching from the 

tissue.  It should also be noted here that each attempt to test the medial and abluminal layers of 

ILT resulted in the surgical staple pulling out from the biaxial specimen edges.  This is consistent 

with our previous observation that these layers are significantly weaker than the luminal layer 

[59].  Prior to collecting data for subsequent analysis, each specimen was preconditioned through 

nine loading and unloading cycles to the same tension ratio.  Data from the tenth loading cycle of 

each tension ratio protocol is used for analysis as described below.   
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Figure 2-4:  Biaxial specimen undeformed geometry (left) and tension-driven biaxial 
protocol (right) 
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2.2.4 Data Analysis 
 

2.2.4.1 Stress   
 
 
The 1st Piola-Kirchhoff stress tensor P was calculated from the measured loads and the initial 

specimen dimensions, so that the non-zero components of P were 

θ L
θθ LL

L θ

f fP ,                           P
HX HX

= =                                      (2.1) 

where fθ and fL are the measured loads in each direction and H is the averaged specimen 

thickness in the unloaded reference configuration. The 2nd Piola-Kirchhoff stress tensor S was 

determined using S = P · F-T, and the Cauchy stress tensor t from t = P · F/J, which for an 

incompressible material with negligible shear terms reduces to 

θθ θ θθ LL L LLt λ P            t λ P= = .                                           (2.2) 

 
 

2.2.4.2 Strain 
 

From the marker positions, the deformation gradient tensor F was calculated at each data point 

(Sacks 2000).  The components of the in-plane Green strain tensor E were calculated using 

( )1
2
1 T −= FFE .                                                        (2.3) 

The shear components of the deformation gradient tensor F in all of the tested specimens were 

found to be negligible, so that the in-plane Green strain tensor components were determined 

using 

( ) ( )1λ
2
1E                     ,1λ

2
1E LLLθθθ −=−= 22 .                              (2.4) 
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The peak stretch values for each specimen in the circumferential and longitudinal directions for 

the equibiaxial protocol were recorded and compared.  The overall extensibility of the tissue was 

quantified with the calculation of the areal strain: 

1λλe LθA −= .                                                        (2.5) 

2.2.4.3 Stiffness 
 
Unlike linearly elastic materials, the stiffness for nonlinear materials is a function of strain.  

Typically for soft biological materials, the stress-strain response is exponentially shaped, so that 

the incremental stiffness increases with strain.  For all of the arterial tissues studied herein, the 

peak tension for the equibiaxial protocol was estimated to be in the physiological range of 

stresses and strains.  For this reason, the stiffness of all biaxial specimens was assessed by 

calculating the maximum tangential modulus (MTM), defined as the peak slope of the 

equibiaxial stress-strain curves in each orthogonal testing direction. 

 

2.2.5 Statistical Analyses 
 

Student’s t-tests were used to compare values across groups, while paired t-tests were used to 

compare values within groups.  For data that was not normally-distributed, a Mann-Whitney rank 

sum test was performed.  All statistical analyses were performed in SigmaStat v.2.03, with a p 

value less than 0.05 determining significance.  All values are reported as mean ± SEM. 
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2.3 RESULTS AND DISCUSSION 

 

2.3.1 Nonaneurysmal Abdominal Aorta 
 

2.3.1.1 Results 
 

Biaxial Mechanical Response.   

The mean percent error for the longitudinal and circumferential peak stretch for the multiple 

equitension protocols were 0.74% ± 0.3 and 0.55% ± 0.4, thus proving the response of each 

specimen was repeatable throughout the entire biaxial test and that no structural damage 

occurred to the tissue as a result of the experiment.  Typical S-E plots for all biaxial protocols 

for all three age groups are shown in Figure 2-5.  The biaxial biomechanical response of those 

specimens in Group 1 (<30 yrs old) was markedly different as compared to those in Groups 2 

and 3.  The shapes of the response functions for Group 1 were, in general, nonlinear and 

sigmoidal in nature, while those from Groups 2 and 3 were nonlinear and displayed a single 

concavity.  In addition, the specimens in the younger group displayed a much larger extensibility  
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Figure 2-5:  Typical stress-strain plots for all protocols and age groups 
 



 

than either Groups 2 and 3.  The peak stretch values in the circumferential and longitudinal 

directions are shown according to age group in Figure 2-6.  There were no statistical differences 

between circumferential and longitudinal peak stretch values for any age group.  The 

corresponding longitudinal and circumferential peak stretches were significantly smaller for 

Groups 2 and 3 when compared to Group 1 (p<0.001).  The areal strain for each specimen can be 

seen versus age in Figure 2-7.  This plot displays the gradual decline in the gross extensibility of 

abdominal aortic tissue with age.  
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Figure 2-6:  Peak stretch values in both directions according to age group.  p<0.001 for 
Group 2 and 3 peak stretch values compared to Group 1 values in both directions 
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Figure 2-7:  Areal strain as a function of age 
 

2.3.1.2 Discussion 
 

The biaxial biomechanical response of human nonaneurysmal abdominal aorta was evaluated in 

relation to age.  It was found that this response changes from a sigmoidal shape of high 

extensibility for young tissue to a much stiffer exponential shape displaying a significantly lower 

areal strain for older tissue.  The peak stretch values for equibiaxial protocols resulted in values 

that decreased with increasing age, but did not significantly differ when comparing longitudinal 

to circumferential directions within each age group. 
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Previous biomechanical studies on abdominal aorta have focused on pressure-diameter 

tests and uniaxial tensile tests.  Our laboratory [32] previously reported the stiffening of the 

uniaxial biomechanical behavior of human aneurysmal aortic tissue in the longitudinal direction 

in comparison to nonaneurysmal tissue.  Patel et al. [62] also studied the biomechanical behavior 

of canine aorta and determined this tissue to be anisotropic.  The sigmoidal shaped biaxial 

biomechanical response of the Group 1 nonaneurysmal abdominal aorta reported here is similar 

to previous reports given by Ling et al. who also show a similar shaped stress-strain response for 

arterial biaxial loading [63].  The sigmoidal shape of the stress strain curves for this age group 

are also similar to the biconcavity known to be present in the mechanical response of polymer-

like materials[64].  Nicosia et al. have also recently reported biaxial tensile testing results for the 

pig ascending thoracic aorta[65].  Their results suggest that the aortic root is stiffer in the 

circumferential direction than in the longitudinal direction.  They also reported a stiffer response 

in the anterior portion of the aortic root than for the posterior region, with a relatively linear 

mechanical response up to 40% strain.  Their results are in contrast to our reported data that 

showed no preferential increase in distensibility for either the longitudinal or circumferential 

directions in the human abdominal aorta. 

The biaxial mechanical response of human nonaneurysmal abdominal aorta was 

quantified, taking note of changes that occur with advancing age.  The biaxial tensile testing data 

here represent the only data in the literature for the multi-axial response of human abdominal 

aortic tissue.  Such data can be used for the development of constitutive models for these tissues, 

which allows their implementation into finite element analyses.  These results are important for 

any scientist interested in accurately predicting the stress environment within the nonaneurysmal 

abdominal aorta. 
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2.3.2 Descending Thoracic Aorta 
 

2.3.2.1 Results 
 

Seven matched pairs (from the same cadaver) of human descending thoracic (DTA) and 

abdominal aortas (AA) were harvested from autopsy within 24 hours of death, following NIH 

and IRB guidelines.  Representative plots of the second Piola-Kirchhoff stress vs. the Green 

strain for the DTA and AA can be seen in Figure 2-8.  This figure suggests that the AA becomes 

stiffer after age 30, while the DTA becomes stiffer after age 60.  By comparing the longitudinal 

(1) and circumferential (2) directions, one sees little evidence for anisotropy for either AA or 

DTA at any age.  Figure 2-9 shows the average MTM values for each group and for each 

location.  Statistical analyses revealed a higher stiffness for the Group 3 DTA when compared to 

Groups 1 and 2 DTA after accounting for changes in direction (p<0.001 in both cases).  Group 2 

AA specimens were also found to be stiffer than the Group 1 AA specimens after accounting for 

changes in direction (p=0.018).  AA specimens were found to be stiffer than DTA specimens 

after accounting for changes in age (p=0.03).  There were no other statistical differences when 

comparing MTM across age, direction, or location.   

 The average areal strain is shown for each group and location in Figure 2-10.  The 

average areal strain gradually decreased with age for both DTA and AA.  The larger decrease in 

areal strain from Group 1 to Group 2 for AA correlates well with the large increase in MTM seen 

for the same age groups and location (Figure 2-9).  
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Figure 2-8:  Representative stress-strain plots for DTA and AA specimens 
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2.3.2.2 Discussion 
 

The above results suggest that the biaxial response of AA and DTA are similar for the younger 

(< 30 yr) specimens.  While AA demonstrated marked stiffening by middle age, DTA did not. 

The stiffness of AA did not change significantly after middle age whereas the DTA demonstrated

marked stiffening.  The only significant difference in stiffness between AA and DTA was at 

middle age, where the AA was as stiff as the older tissue, but DTA was as comp

Figu ion 

 
 
 

Figure 2-10:  Areal strain for each age group and location 
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tissue.  There was no evidence for significant anisotropy for any tissue at any age.  Our results 

suggest that the course of age-related stiffening of the aorta is location-dependent. 

The data presented by Fung concerning the location-dependence of the uniaxial stiffness 

of dog aorta shows a gradual increase in the circumferential stiffness as one progresses along the 

aortic tree [66].  A similar result is found here, where the MTM was found to be significantly 

higher for AA than for DTA specimens of the same age group.  The results reported here, 

however, suggest that the stiffening in the aorta gradually ‘works its way’ proximally towards 

the heart as one progresses in age.  An in depth investigation which includes the age-dependency 

of the biaxial mechanical response of human ascending abdominal aorta along with the DTA and 

AA specimens may more clearly investigate this preliminary conclusion.  Early uniaxial testing 

of  human descending thoracic aorta was performed by Sherebrin et al[67].  They found the 

human descending thoracic aorta to be uniaxially more extensible in the circumferential 

direction, which is in agreement with the data presented here in which we found a stiffer 

response in the longitudinal direction for the Groups 2 and 3 DTA specimens (Figure 2-9).  

Other prior investigations into the mechanical properties of descending thoracic aorta has been 

limited to the uniaxial tensile testing of Landrace pigs[68, 69].  For example, Angouras et al. 

showed that at the same level of strain, inducing ischemia into the descending thoracic aorta of 

the pig resulted in a significantly stiffer uniaxial mechanical response at both low (p=0.03) and 

high strains (p=0. 003) than the control aortas.  Mohan and Melvin presented the biaxial 

mechanical response of human descending mid-thoracic aortic tissue via a bubble inflation 

technique.  Their study was primarily focused on the failure mechanisms of this tissue, and 

concluded that under conditions of uniform biaxial stretch the tissue consistently failed in a 

direction perpendicular to the long axis of the aorta[50].  Other biaxial tensile tests of descending 
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thoracic aorta include the biaxial tensile tests of canine descending thoracic aorta reported by 

Zhou et al.[44] 

While the bubble inflation technique used by Mohan and Melvin is capable of 

investigating the failure properties of the descending aorta, it is unable to subject the tissue 

specim

 Abdominal Aortic Aneurysmal Wall 
 

A total of twenty-six tissue specimens from the AAA (mean diameter 6.5 ± 0.2) of twenty-six 

atients (mean age = 72.3 ± 1.8) and eight AA specimens from eight subjects (mean age = 70.6 ± 

es for all specimens, 

onfirming that no structural damage of the tissue occurred as a result of the testing.  

en to a wide range of stresses and strains.  Performing a test in which a wide range of 

stress/strain states are covered is advantageous for the development of a constitutive relation, as 

this offers the development of a relation that is comparably less sensitive to a specific loading 

condition.  To the author’s knowledge, the results reported here are the first for the planar biaxial 

tensile testing of human descending thoracic aorta and how this mechanical response varies with 

age. 

 

2.3.3

2.3.3.1 Results 
 

p

1.9, p=0.64 in comparison to AAA group) were tested and analyzed.    The mean measured 

thickness values were 1.49 ± 0.11 mm and 1.32 ± 0.08 mm for the AA and AAA specimens, 

respectively (p=0.29).  The mean measured thickness values within each specimen varied by 

0.014 ± 0.01 mm and 0.019 ± 0.01 mm for the AA and AAA, respectively. 

 

Results from the multiple equibiaxial protocols resulted in repeatable curv

c
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Representative S-E plots displayed a marked decrease in extensibility and increase in stiffness 

for AAA specimens as compared to age-matched AA specimens (Figure 2-11).  There was also 

a decrease in initial slope and more abrupt change in stiffness for AAA specimens as compared 

to AA specimens (Figure 2-11).  The peak shear stresses and strains (SθL and EθL) were 

confirmed to be at least one order of magnitude smaller than normal stresses (Sθθ, SLL) and 

strains (Eθθ, ELL) for all AA and AAA specimens.   

The mean peak Green strains Eθθmax and ELL,max for the equibiaxial tension (Tθθ=TLL=120 

N/m) protocol for the AA specimens were 1.12 ± 0.02 and 1.11 ± 0.02, respectively. (p=0.77; 

Figure 2-12A)  Eθθmax and ELL,max under equibiaxial tension for the AAA specimens were 0.07 ± 

0.01 and 0.091 ± 0.01, respectively. (p=0.047; Figure 2-12A)  There was no significant 

difference in ELL,max between the AA and AAA groups (p=0.24).  However, Eθθmax was found to 

be significantly smaller for AAA as compared to AA (p=0.01).  The average values of ELL,max/ 

Eθθmax for the AA and AAA groups were 0.96 ± 0.09 and 1.62 ± 0.01, respectively (p=0.1).  The 

mean areal strain for AA (0.25 ± 0.05) was significantly larger (p=0.03) than that of the AAA 

(0.16 ± 0.02), suggesting that AA tissue is more distensible than AAA tissue (Figure 2-12B).  

The average MTM in the circumferential direction was 11.7 ± 1.9 MPa and 3.9 ± 1.1 MPa for the 

AAA and AA, respectively (p=0.03).  The average MTM in the longitudinal direction was 8.3 ± 

1.2 MPa and 3.3 ± 0.6 MPa for the AAA and AA respectively (p=0.03).  There were no 

significant differences between circumferential and longitudinal MTM in either group, although 

the MTM exhibited a trend towards higher values (p=0.11) in the circumferential versus 

longitudinal direction for AAA tissue (Figure 2-13). 
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Figure 2-11:  Stress-strain plots for a representative AAA and AA specimen 
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Figure 2-12:  Peak strains (A) and areal strain (B) for AAA and AA tissue 
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Figure 2-13:  AAA and AA maximum tangential modulus for both experimental directions 
 
 

2.3.3.2 Discussion 
 

The biaxial testing of aneurysmal and non-aneurysmal aortic tissue allows for the investigation 

of anisotropy as well as the derivation of a more appropriate constitutive model for this tissue.  

The results herein suggest that aneurysmal degeneration of the human abdominal aorta is 

associated with a marked alteration in mechanical behavior.  For example, AAA tissue is stiffer 

than AA (Figures 2-11, 2-13) as well as exhibiting a decrease in its extensibility under the same 

stress state (Figure 2-12).   The decrease in circumferential peak stretch (Figure 2-12A), and the 

larger circumferential MTM in AAA (Figure 2-13) also suggest the presence of increased 

anisotropy in AAA as compared to age-matched AA.  Although the differences between 

longitudinal and circumferential MTM within each group were not significant, there is a clear 
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trend of increased stiffness and decreased extensibility in the circumferential direction for AAA 

tissue.  Since the stress-state imposed on the specimens for the present study lie within the range 

of stresses experienced by the AAA tissue in-vivo, the increase in anisotropy reported here 

should be considered physiologically significant.   

 To date there have been relatively few investigations of the mechanical response of 

abdominal aortic aneurysm tissue.  He and Roach[53] reported the changes in composition of 

collagen and elastin within AAA and how this effects this tissues uniaxial mechanical response.  

Their results suggest a stiffening of AAA tissue with respect to nonaneurysmal tissue, similar to 

the results reported here.  For modeling purposes, they applied a simplistic exponential equation 

to describe the uniaxial stress-strain relationship.  While informative for quantifying gross 

changes in mechanical behavior, this type of equation is difficult to implement into the solution 

of both geometrically simple and complex boundary value problems.  For such a purpose a 

continuum-based constitutive model must be derived.  Such a model for the AAA wall was 

developed by Raghavan and Vorp in 2000 [38] in which they utilized uniaxial tensile testing 

results to develop a continuum-based isotropic constitutive relationship, which is easily 

implemented into commercial finite element codes. 

 The assumption of isotropy for the AAA wall was made in all of the investigations of 

AAA mechanical behavior to date.  The biaxial tensile testing results reported here provide the 

appropriate mechanical dataset to investigate the anisotropy of AAA.  The only other biaxial 

tensile testing of aneurysmal tissue in the literature is that given by Okamoto et al. in their study 

of the biaxial mechanical properties of dilated ascending thoracic aortic tissue[70].  In their study 

there was no set of control data for the aneurysmal tissue, so that the effects of aneurysmal 

dilation on the anisotropy of the ascending aorta could not truly be realized.  The circumferential 
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stiffening of the AAA reported here represent the first investigation of this tissue’s anisotropy.  

In addition, this dataset allows the development of an anisotropic constitutive relationship, which 

in turn may better estimate the stress and strain environment within patient-specific finite 

element analyses of AAA. 

 

2.3.4 Intraluminal Thrombus 
 

2.3.4.1 Results 
 

Nine separate luminal ILT specimens were harvested from nine different patients (aged 71.0 ± 

4.5 yrs) and used in this study.  The AAAs were 5.9 ± 0.4 cm in diameter. 

 

General Experimental Findings.   

The multiple equibiaxial protocols resulted in repeatable curves for all specimens, suggesting 

that no structural damage of the tissue occurred as a result of the testing.  The peak shear stresses 

and strains (S12 and E12) remained one order of magnitude smaller than S11, S22, E11 and E22 for 

all specimens.  Representative plots of the second Piola-Kirchhoff stress vs. Green strain 

displayed a near linear response in both directions for all specimens (Figure 2-14).   ILT 

specimens fit the response functions well (average R2=0.988 ± 0.003 and R2=0.988 ± 0.006 for 

the circumferential and longitudinal directions, respectively).   
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Figure 2-14:  Representative stress-strain plot for the luminal layer of ILT 
 

 

Mechanical Parameters.   

The average peak stretches in the equibiaxial protocol for the ILT specimens were 1.18 ± 0.02 

and 1.13 ± 0.02 in the circumferential and longitudinal directions, respectively (p=0.14; Table 2-

4).  The average areal strain for all specimens was 0.34 ± 0.03. The average MTM for the 

equibiaxial protocol were 20.1 ± 1.6 N/cm2 and 23.1 ± 2.9 N/cm2 for the circumferential and 

longitudinal directions, respectively (p = 0.37; Table 2-4).   

 

 

 

 

 

 

40 



 

 

Table 2-4:  Peak stretch, areal strain, and MTM for the luminal layer of ILT 
 

ILT MECHANICAL PARAMETERS 

Specimen λθ λL eA MTMθ MTML 

1 1.19 1.14 0.36 16.0 20.1 

2 1.13 1.07 0.21 25.8 32.8 

3 1.11 1.13 0.25 26.0 23.0 

4 1.24 1.09 0.36 16.0 21.8 

5 1.27 1.19 0.51 15.3 15.7 

6 1.12 1.16 0.31 19.9 14.9 

7 1.10 1.20 0.32 26.9 18.5 

8 1.23 1.13 0.39 17.0 19.2 

9 1.25 1.08 0.35 18.0 42.1 

MEAN 1.18 1.13 0.34 20.1 23.1 

SEM 0.02 0.02 0.03 1.6 2.9 

 
 
 

2.3.4.2 Discussion 
 

The biaxial mechanical response of the luminal layer of freshly-harvested ILT from AAA was 

investigated and displayed a nearly linear response over the entire strain plane and across all 

biaxial protocols.  The peak stretches and MTM values for the equibiaxial protocol in both the 

circumferential and longitudinal directions did not differ, providing evidence for this materials 

isotropic mechanical response. 

Our results are in agreement with previous data reported by our laboratory [59], in which 

the uniaxial biomechanical response of the ILT was similar in the longitudinal and 

circumferential directions.  While the MTM reported previously from uniaxial tensile tests 
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(MTMθ = 54 ± 7 N/cm2 and MTML = 57 ± 7 N/cm2) were larger than those reported here (MTMθ 

= 20.1 ± 1.6 N/cm2 and MTML = 23.1 ± 2.9 N/cm2), both sets of data revealed no significant 

differences between the two directions, again supporting the idea that the ILT is an isotropic 

tissue.  The differences in magnitude between the MTM values is due to the different testing 

methods used, and is likely due to two primary effects.  First, it may be a result of a lack of a 

load free condition upon the start of the uniaxial test, as this error is minimized in the biaxial test.  

This pretension would result in the response being evaluated in a higher stress region of the 

stress-strain curve, resulting in a stiffer response for a given strain.  Secondly, as the uniaxial 

specimen is deformed, all of the fibers within it are allowed to align themselves in the direction 

of loading, thus resulting in a stiffer response in this direction for this test.  This would not be the 

case in equibiaxial testing, where the fibers are inhibited from rotating as the specimen is being 

deformed.   

 

 
2.3.5 Limitations 
 

Biaxial Testing 

All aortic tissue samples were assumed to be pseudoelastic, so that the loading curves could be 

isolated and analyzed in the current work.  The viscoelastic effects (e.g., hysteresis) of the tissue 

were dampened by using a 9 cycle preconditioning protocol which resulted in repeatable loading 

curves (Figure 2-15).  In addition, each cycle of preconditioning was repeated immediately after 

the previous cycle, with each cycle lasting typically around 6 seconds long.  The resolution of the 

CCD camera and image acquisition software used here was ~0.021 mm/pixel. 
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Changes in Loading Curves Over Cycles
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Figure 2-15:  Stress versus strain in the circumferential direction for a representative 
specimen for all preconditioning cycles 

 

 

Nonaneurysmal Abdominal Aorta   

There are several limitations as pertain to the biaxial testing of nonaneurysmal aortic tissue.  

Those related to the experimental testing protocol itself have been discussed elsewhere [37, 61].  

One important assumption that must be noted when analyzing the biaxial data reported here is 

that the stresses and strains are assumed to remain homogenous within the central region of the 

specimen (inside the four markers used for strain measurement).  For an accurate assessment of 

this assumption, a large number of markers should be used in order to determine the strain 
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distribution.  In addition, the stresses acting on the biaxial specimen are also assumed to be 

homogenous within the central region of the specimen, so that any St. Venant-like effects caused 

by hooking the specimen are minimized.   

Although there were no statistically significant differences between the peak stretches of 

autopsy specimens as compared to organ donor specimens in any age group (p>0.2), there may 

have been some error introduced when grouping these specimens together.  Our results are in 

contrast to a recent report by Monson et al. which shows a slightly less extensible mechanical 

response for autopsy cerebral blood vessels as opposed to those retrieved from cadavers [71].  

While there may have been bias as to the source of the nonaneurysmal specimens utilized in this 

study given the clinical history of each of the organ donors and autopsy subjects, this limitation 

was deemed acceptable given the lack of availability of human tissue.  

 

Descending Thoracic Aorta   

The most obvious limitation for the DTA mechanical investigations is the lack of sample size for 

the Group 1 and Group 3 specimens.  This lack of power, however, is offset by the gain in 

statistical power achieved by utilizing matched DTA and AA samples from the same autopsy 

cadaver.  Another limitation of the DTA specimens was the inconsistency in position from which 

these specimens were isolated from the subjects.  For example, while the AA specimens were 

confined to a more local region of the aorta (between the renal arteries and the aortic 

bifurcation), the DTA samples were taken from various distances proximal to the renal arteries.  

Since it is known that the biomechanical properties of the aorta change as the aortic tree is 

traversed, this may have induced error in the data and subsequent conclusions.  However, since 
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each subject had paired DTA and AA specimens, the general conclusions made here would be 

expected to hold for more repeatable excision of DTA specimens. 

 

AAA Wall   

There were no AA or AAA specimens taken from the same patient, thereby preventing any 

information to be gleaned on variability of the biaxial response as a function of location within 

an individual aorta.  This may be especially important in AAAs, as preferential bulging of the 

aorta occurs on the anterior portion of the blood vessel.  Another limitation of the current study 

was the grouping of both sexes into both experimental groups (AA and AAA), which may have 

resulted in greater variability in the data.  This was felt to be acceptable due to the lack of an 

identifiable difference in any biomechanical endpoint (e.g., peak strains, material parameters) 

between the two sexes within either group.  Although not an aim for the current study, the 

comparison of the gross fiber architecture between AA and AAA specimens and its effect on the 

macroscopic mechanical properties of these tissues would also be informative. 

 

Intraluminal Thrombus   

One obvious limitation to the biaxial tensile testing of the intra-luminal thrombus is the inability 

to test the medial and abluminal layers.    This inability was likely a result of the decrease in 

structural organization present in these layers as compared to the luminal region [59].  More 

appropriate multi-axial testing methods are needed in order to investigate and identify the 

anisotropic response of these layers of ILT.  Another limitation of the current study is that the 

biaxial testing of planar sheets of the luminal layer of ILT does not completely capture the in-

vivo loading conditions, as this material also undergoes radial compression (thinning) over the 
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cardiac cycle [72].  However, although the full thickness of the ILT in-vivo is large in places (1-

3cm) relative to its typical diameter (3-7cm), the thickness of the luminal layer is small in 

comparison (2.8 ± 0.08 mm, n=9).  This suggests that the mechanical loading experienced by the 

luminal layer of ILT in-vivo may be predominantly 2D in nature. 
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3.0 ANISOTROPIC CONSTITUTIVE MODEL DEVELOPMENT 

 

 

3.1 INTRODUCTION 

 

The modeling of soft biological tissues has been done for many decades.  Typically, these 

constitutive relations are classified according to the assumptions utilized in their development.   

For example, many researchers have assumed that biological tissues such as bone act in a linear 

fashion, assuming these tissues undergo small deformations in-vivo.  For tissues undergoing 

large strains in-vivo, finite deformation theory must be applied in order to derive appropriate 

models relating stress and strain within a body.  Another assumption typically utilized in the 

constitutive development of soft tissues is that of isotropy.  Simply stated, mechanical isotropy 

assumes the material behaves in the same manner regardless of loading direction.  Our laboratory 

has previously developed a finite deformation isotropic constitutive relation for the AAA wall as 

well as the ILT [38, 59].  As was displayed Chapter 2, the AAA wall displays an anisotropic 

mechanical response.  The development of an anisotropic constitutive relation for the AAA wall 

may therefore be important in predicting the stresses acting on AAA in-vivo.  Likewise, the 

derivation of an isotropic constitutive relation for the ILT based on multi-axial tensile testing 

experiments is also thought to be important in determining the stresses distributed to the wall via 

the ILT.  
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3.2 METHODS 

 

3.2.1 Assumptions 
 

3.2.1.1 Homogeneity 
 
 
Soft tissues in general are primarily composed of water and have negligible permeability [47].  

Stergiopulos et al [73] studied the homogeneity of the medial layer of pig aorta.  They concluded 

that the media has similar mechanical properties through the thickness of the wall as well as a 

uniform distribution of matrix protein and vascular smooth muscle cells. For this reason they 

concluded that the aortic media can be considered as an elastic, homogenous medium.  The 

assumption of homogeneity for soft tissues has also been made our laboratory and by several 

other researchers[38, 41, 42, 48, 49, 59, 66, 70, 74-77].  Based on these previous investigations, 

the human abdominal aortic media and the intra-luminal thrombus will herein be assumed to act 

as a homogenous material.   

 

3.2.1.2 Large Deformation 
 
 
Blood vessels are also known to undergo finite deformations under normal physiologic 

conditions.  For this reason, arterial tissue has been modeled as hyperelastic by many researchers 

[38, 74, 78-81].  A study by Vorp et al. also investigated the deformability of the ILT and 

revealed that it undergoes in-vivo deformations of approximately 8% over the cardiac cycle[72].  

This suggests that a linear elastic constitutive relation for ILT may be inappropriate and may 

introduce large errors.  A hyperelastic relation would therefore better suit the large deformations 
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observed by both the aortic media and ILT in-vivo.  For these reasons, these tissues will be 

assumed to undergo large deformations and therefore will require the development of finite 

strain constitutive relations. 

 

3.2.1.3 Incompressibility 
 

Chuong and Fung studied the incompressibility of the arterial wall and determined that it acts as 

a nearly incompressible material in the range of stresses experienced in vivo [78].  Girerd et al. 

more recently studied the incompressibility assumption with the utilization of an ultrasound 

echo-tracking device.  There investigation studied the change in cross-sectional area of both the 

human internal mammary artery and radial artery and found there to be minimal changes in the 

cross-sectional area for various levels of strain.  Since the artery length remained constant during 

their pressure increases, the lack of change in the cross-sectional area of the arterial wall suggests 

that the arterial wall of human  arteries is essentially incompressible[82].  A similar study was 

performed by Vorp et al. in which ultrasound techniques were used to investigate the changes in 

cross-sectional area of ILT over the cardiac cycle.  Similar results were reported in that there was 

found to be little change in area throughout the cardiac cycle for the ILT[72].  In addition, the 

ILT has also been previously modeled as an incompressible material by our laboratory[59].  

Based on all of the afore-mentioned previous investigations, the aortic wall and intra-luminal 

thrombus tissue presented here will be modeled as an incompressible, homogenous, hyperelastic 

material undergoing finite deformations. 
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3.2.2 Assessment of Anisotropy 
 

Simply stated, an anisotropic material is any material whose mechanical response is dependent 

on the direction of loading.  For the purpose of constitutive model development, it is important to 

consider whether the assumption of isotropy creates significant errors in the prediction of 

stresses and strains within a soft tissue.  In reality, most all soft tissues display some degree of 

anisotropy, due to the presence of a preferred direction of the collagen fiber network.  The 

mechanical structure and function of a tissue will determine in great part whether its mechanical 

response is anisotropic.  Planar biaxial testing provides a means for testing the degree of 

anisotropy present within a tissue as detailed below. 

 

3.2.2.1 Peak Stretch 
 
 
The biaxial protocols listed in Figure 2-3 represent a wide range of stress and strain 

configurations within the biaxial specimen.  The biaxial device utilized in the current study is 

able to control specimen deformation either with strain or load control.  The tension (load) 

controlled protocol chosen herein suggests that the anisotropy of the specimens can be quantified 

by investigating the changes in peak strain for the equibiaxial (Tθθ:TLL=1:1) protocol.  That is, 

for a given amount of equivalent loading in each orthogonal direction, the amount of anisotropy 

can be quantified by comparing the peak stretch values (or strains) throughout the equibiaxial 

protocol.  Since the peak value of loading is assumed to be in a physiological range, the values of 

the stretches at this loading in the circumferential and longitudinal directions will be recorded 

and compared for each tissue. 
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3.2.2.2 Maximum Tangential Modulus 
 

For similar reasons as stated above for the peak stretch values, the amount of anisotropy can also 

be quantified by the MTM in both of the orthogonal testing directions.  Again, since the peak 

tension for the equibiaxial protocol was estimated to be in the physiological range of stresses and 

strains, any directional differences in MTM for a given tissue should be considered 

physiologically significant.  For these reasons, the anisotropy of all biaxial specimens was also 

assessed by calculating and comparing the maximum tangential modulus (MTM) in both the 

circumferential and longitudinal directions. 

 

3.2.2.3 Response Functions 
 

Rather than speculate a-priori a potential form for the strain energy function W, the following 

method was employed to probe the pseudo-elastic response of arterial tissue in a protocol-

independent manner.  Details of this approach have been previously published [83]. Briefly, the 

S-E data for each axial component were independently fit to the following response functions 

2 2
θθ o 1 θθ 3 LL 4 θθ LL 5 LL 6 θθ LL 7 θθ

2 2
LL o 2 LL 3 θθ 4 θθ 5 LL θθ 6 θθ LL 8 LL

1S c c E c E c E E c E c E E 2c E e
2

1S c c E c E c E c E E c E E 2c E e
2

 = + + + + + 
 
 = + + + + + 
 

3 Q

3 Q

      (3.1) 

where 

( )2 2 2 2 2 2 4 4
1 θθ 2 LL 3 θθ LL 4 θθ LL 5 LL θθ 6 θθ LL 7 θθ 8 LLQ c E c E 2c E E c E E c E E c E E c E c E= + + + + + + +  

and ci are constants.  Note that equations (3.1) were not used as a constitutive model, but rather 

as a set of response functions that allow the interpolation of each stress component within the 

experimental strain range for Eθθ and ELL.  These response functions were independently fit to all 
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stress-strain data using the nonlinear regression software package SigmaStat (v. 2.03, SPSS, 

Chicago, IL) using a Marquart-Levenburg least-squares algorithm.  The resulting response 

surfaces were used to guide the choice of W by plotting contours of constant stress for both Sθθ 

and SLL.  For a perfectly isotropic material such contours would display symmetry about the y = 

x axis, while the degree of asymmetry would indicate the presence and amount of mechanical 

anisotropy present in the tissue (see Figure 3-1).   

S11

E11

E22

Eθθ

ELL

Sθθ

E11

E22ELL

Eθθ

S11Sθθ

 

Figure 3-1:  Circumferential stress contour plot for an idealized perfectly isotropic material 
 

 

3.2.3 Population-wide Constitutive Modeling 
 

The primary driving force for determining constitutive models for the current investigation is the 

implementation of such models into patient-specific finite element simulations of AAA.  In 

particular, it is mandatory that constitutive models be developed that describe the averaged 

“population-wide” mechanical response, since these models are to be utilized in a noninvasive 
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manner for the prediction of and individual patient’s AAA wall stress.  The manner in which an 

“averaged” constitutive relation will be derived for a given tissue will be based primarily on the 

form of the strain energy used to describe its mechanical response.  For constitutive models 

which have material parameters that do not have any nonlinear interactions with each other, the 

“population-wide” set of parameters will be taken as the mean of each specimen’s individually-

fitted material parameters.  In the event that a model is developed which does contain material 

parameters which nonlinearly interact with one another, the following method to derive a 

“population-wide” set of material parameters will be utilized. 

To determine the averaged response for a given arterial tissue, the individual tension vs. 

strain data for each component from each protocol were fit to the following equation  








=
ET bae                                   (3.2) 

where T is the tension in N/m, E is the Green strain, and a and b are parameters describing the 

tension-strain relationship for an individual biaxial testing protocol.  The above equation was 

chosen to represent each individual protocol due to their exponential shape.  This equation also 

allows the Green strains for a given protocol to be extrapolated for prescribed increments of 

tension spanning the entire tension range for each protocol (e.g., 0-120 N/m for the AAA wall).  

A custom-written Matlab (v6.0 R12) code (see Appendix A) was used to fit (3.2) to each set of 

T-E data, and extrapolate and average Green strain values for prescribed tension intervals of 2 

N/m for each individual tension-protocol.  Note that the response functions (3.1) could not be 

used to identify the averaged dataset since the specimens were tested under a tension (not a 

stress) controlled protocol from 0 to 120 N/m.  The averaged tension values for each of the 

biaxial protocols were then converted to first-Piola Kirchhoff (P) stress using the following 

equation 
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where T is the averaged tension, n is the number of specimens in a given group, and ti is the 

thickness for each individual specimen.  The first-Piola Kirchhoff stresses calculated here were 

then converted to second-Piola Kirchhoff stresses (S = P · F-T) for all five protocols and were 

used in the derivation of a single constitutive model for each tissue type.  The material 

parameters from the nonlinear regression of the averaged datasets to the constitutive model were 

then taken to represent the average mechanical response of each tissue type.  In order to provide 

information on both the spread of the averaged data as well as the material parameters, the upper 

and lower 95% confidence interval of E at each level of tension and for each protocol was also 

calculated, providing upper and lower 95% confidence interval datasets from which material 

parameters were also derived by nonlinear regression to the constitutive model. 

 

 

3.3 RESULTS AND DISCUSSION 

 

3.3.1 Nonaneurysmal Abdominal Aorta 
 

3.3.1.1 Results 
 

Interpretation and Choice of W 

All biaxial data fit the response functions (3.1) well with the smallest R2=0.92 (range 0.92-0.96).  

Stress contour plots were constructed from the response functions for each specimen and used to 

graphically investigate the mechanical response.  For a perfectly isotropic material, the stress 
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contours are symmetric about the E11 = E22 axis.  As shown in Figure 3-2, the stress contours 

for Group 1 maintain a significant amount of symmetry, which suggests the use of an isotropic 

strain energy function for this group.  The use of an isotropic W for Group 1 is further supported 

by our finding that the peak stretches in the longitudinal and circumferential directions for the 

equibiaxial protocol for this group did not significantly differ (Figure 2-6).   

Although there were no significant differences in the equibiaxial longitudinal and 

circumferential peak stretches for Groups 2 and 3, the response functions for these groups 

consistently displayed an asymmetric response about the E11 = E22 axis, suggesting a 

mechanically anisotropic response.  Moreover, constant stress contours indicated a dramatic 

increase in stiffness with strain, compared with Group 1 (Figure 3-2).  Thus, the response 

functions for Groups 2 and 3 suggested the use of a general anisotropic Fung-type strain energy 

function.  Since the shear stresses and strains were negligible, the response of Groups 2 and 3 

was adequately captured by: 

( )2 2
o 1 θθ 2 LL 3 θθ LL

cρ W exp A E A E 2A E E
2

 = + + 1−

)
                                                  (3.5) 

( ) (∑∑
∞

=

∞

=

−−=
0i 0i

j
2

i
1ij 3I3IDW

In preliminary studies, we noted that the biaxial data for Group 1 were not adequately fit to (3.4), 

as this function is unable to account for sigmoidal stress-strain data for this group.  Based on the 

results in Figures 2-5, 2-6, 3-2, and 3-3, we used a strain energy function of the form [84] 

.                                   (3.4) 

where the Dij are material constants and I1 and I2 are the first and second strain invariants of the 

left Cauchy strain tensor B: 

( )[ ]22
21 trtr

2
1I                        trI BBB −==

                                    (3.6) 
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The consecutive addition of terms in the infinite sum of (3.5) allows it to describe increasingly 

complex stress-strain behavior, including the sigmoidal response typical of rubber-like materials.  

Equation (3.5) was developed by Rivlin and Saunders [22], who utilized constant Ii biaxial tests 

to determine the dependence of ∂W/∂Ii on each Ii, from which the appropriate functional form of 

W was found.  Since the current biaxial protocols were tension-driven, Rivlin’s exact approach 

could not be duplicated.  Instead, the following equations derived by Rivlin et al. were used to 

investigate the dependence of ∂W/∂Ii on Ii.   
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                                 (3.7) 

This dependence can then be utilized in a manner similar to Rivlin and lead to the appropriate 

functional form of W. 

Due to the sigmoidal nature of their response functions, the biaxial data for the Group 1 

specimens were fit to the Rivlin-type strain energy function (3.5).  In order to determine if this 

strain energy function requires the inclusion of both I1 and I2, the relationship between the two 

invariants was inspected for each specimen (Figure 3-3).  The observed linear dependence of I1 

and I2 suggests that the inclusion of only one strain invariant is necessary.  To determine what 

terms are necessary for W in equation 3.5, the relationship between ∂W/∂I1 and I1 was 

investigated for each specimen (Figure 3-3). The observed relationship suggests that a quadratic 

expression for ∂W/∂I1 is sufficient for the characterization of this material, resulting in three 
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parameters in the expression for W given by (3.5).  The final model that was fit to the biaxial 

data for Group 1 was then  

( ) ( ) ( )
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where D1, D and D3 are material parameters. 2, 
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Figure 3-2:  Circumferential and longitudinal stress contours for each age group 
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Figure 3-3:  I1 versus I2 and ∂W/∂I1 versus I1 for a representative AA specimen 
 
 
 
 
Constitutive Modeling Results   

The data for Group 1 fit equation (3.8) very well, with an average R2 of 0.97±0.01.  The best-fit 

model parameters are indicated in Table 3-1.  The data for Groups 2 and 3 fit equation (3.4) 

adequately with average R2 values of 0.82±0.10 and 0.90±0.03, respectively. The exception was 

one Group 2 specimen (specimen 10) which was from a 47 year old organ donor aorta that 

appeared (ie., minimal calcifications) and behaved as a Group 1 aorta.  The best-fit model 

parameters for Groups 2 and 3 are indicated in Tables 3-2 and 3-3, respectively.  The 

experimental biaxial data as well as model fits using the best-fit material constants are shown for 
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representative specimens from Groups 1, 2 and 3 in Figure 3-4.  Note also in this figure the outer 

two biaxial protocols (not used in regression) are plotted along with their model fits and can be 

used to investigate the each models predictive capability.  In general, all of the constitutive 

models were able to predict the stresses of aortic tissue for the strains typically experienced in 

vivo.   

 

Table 3-1:  Constitutive model parameters for the Group 1 specimens. OD=organ donor; 
MOSF=multisystem organ failure; HT TX REJ=heart transplant rejection. 

 
RIVLIN MODEL (3.8) – GROUP 1 

R2 Specimen D1 (kPa) D2 (kPa) D3 (kPa) AGE SOURCE 

1 9.95 1.55 0.82 0.99 19 OD 

2 12.96 1.14 5.91 0.97 22 OD 

3 7.87 2.17 1.86 0.97 23 OD 

4 11.09 1.86 1.34 0.98 25 MOSF/SCA 

5 17.12 1.00 0.42 0.98 26 HT TX REJ 
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Table 3-2:  Constitutive model parameters for the Group 2 specimens.  CREP 
MEN=creptycoccal meningitis; SEP=sepsis. X indicates the regression did not converge. 

 
FUNG MODEL (3.4) – GROUP 2 

(A1+A3) Specimen c(kPa) A1 A2 A3 

(A2+A3) 

R2 AGE SOURCE 

6 4.97 8.92 14.54 2.89 0.68 0.93 35 OD 

7 0.75 26.89 20.39 2.93 1.28 0.93 39 CREP MEN 

8 1.58 30.45 19.11 3.14 1.51 0.94 47 SEP 

9 6.53 12.94 11.75 3.75 1.08 0.98 47 OD 

10 X X X X X X 47 OD 

11 0.42 628.29 168.81 89.13 2.8 0.66 50 HT TX REJ 

12 2.29 57.43 34.31 14.26 1.48 0.99 50 OD 

 
 
 

Table 3-3:  Constitutive model parameters for the Group 3 specimens. MI=myocardial 
infarction; CEREB AN=cerebral aneurysm; MET CARC=Metastatic uterine carcinoma 

 
FUNG MODEL (3.4) – GROUP 3 

(A1+A3) Specimen c(kPa) A1 A2 A3 

(A2+A3) 

R2 AGE SOURCE 

13 0.46 58.24 66.30 5.00 0.89 0.99 61 SEP 

14 4.3 12.21 16.23 4.10 0.80 0.96 66 MOSF 

15 0.88 221.58 197.45 7.81 1.12 0.97 69 MI 

16 0.47 148.48 101.68 21.06 1.38 0.82 71 MOSF 

17 0.39 124.97 90.51 14.14 1.33 0.84 75 CEREB AN 

18 4.59 132.10 111.90 26.20 1.15 0.96 75 MET CARC 
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Figure 3-4:  Experimental data and model fits for representative Group 1-3 specimens 
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3.3.1.2 Discussion 
 
 
The pseudoelastic response of human abdominal aorta was modeled as a homogenous 

incompressible hyperelastic material using two different strain energy functions.  Based on the 

experimental response of this tissue, the specimens younger than age 30 were modeled using a 

Rivlin-type polynomial strain energy function, while all of the older specimens were modeled 

using the exponential Fung-elastic form of W.  The use of the Fung model for the specimens in 

Groups 2 and 3 was chosen based on the anisotropic, exponential form of their response 

functions.  When the Fung model was fit to the specimens in Group 1, it was unable to capture 

the sigmoidal or biconcavity nature of the response of this tissue.  As a result, all specimens in 

Group 1 failed to converge when fit to the Fung strain energy function.  Likewise, the data for 

the specimens in Groups 2 and 3 fit the Rivlin form of W poorly.  Therefore, our data suggests a 

shift in the mechanical response of human abdominal aortic tissue past the age of 30. 

Zhou et al. [44] reported the biaxial anisotropy of canine aortic tissue as measured by the 

differences in material parameters A1 and A2 in an equation similar to (3.4).  In particular, they 

noted that the longitudinal stress-strain curve became nonlinear at smaller strains and had a 

steeper nonlinear region than did the circumferential curves.  This resulted in a value for A2 that 

was consistently twice as large as that for A1.  This was in contrast to our data, which showed 

values for A1 larger than those for A2 in all but three specimens.  These differences may be due 

to the fact that Zhou et al. used a segment of thoracic aorta from mongrel dogs, as opposed to the 

human infrarenal aortic tissue used here.  Yin et al. [85] investigated the age-associated changes 

in viscoelastic behavior of canine aorta both in the activated and inactivated state.  Although they 

did not find a large dependence of the stiffness on frequency, they did find a marked increase in 

stiffness with age for both the ascending and descending canine thoracic aorta in both the 
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activated and inactivated states.  These results are consistent with our results in which there was 

a large increase in stiffness in abdominal aorta after a given age. 

The degree of anisotropy of human ascending thoracic aorta reported by Okamoto et al. 

[52] was measured using a dimensionless ratio of material parameters from (3.4): 

( ) ( )3231LLθθ A+AA+A=tt                                           (3.9) 

where tθθ and  tLL are the Cauchy stresses in the circumferential and longitudinal directions, 

respectively.  They found that this ratio did not consistently suggest a preferred direction for this 

tissue as the value for this ratio ranged from 0.64 to 2.00.  The same analysis using the results of 

Groups 2 and 3 resulted in an average value for this parameter of 1.42 ± 0.3 (range 0.68 to 2.8) 

and 1.11 ± 0.1 (range 0.80 to 1.38), respectively.  The parameter values for all specimens are 

listed in Tables 3-1, 3-2, and 3-3.  Consistent with the results reported by Okamoto et al., the 

value of this parameter for human abdominal aorta did not suggest a universal preferred material 

direction, but the fact that this ratio was greater than one for a majority of our specimens gave 

evidence for a stiffer biomechanical response in the circumferential direction as compared to the 

longitudinal direction.  This anisotropic behavior can better be illustrated by noting the non-

symmetry of the circumferential contour plots of Groups 2 and 3 in Figure 3-2.   

 
 
3.3.2 Descending Thoracic Aorta 
 

As seen from Tables 3-4 and 3-5, equation (3.4) fit the older DTA data and the Groups 2 and 3 

AA data well with all R2 > 0.95.  The above model did not converge when fitting the Groups 1 

and 2 DTA or the Group 1 AA.  This was primarily due to the nearly linear and sometimes 

sigmoidal response of these specimens, leading to erroneously high and or low values of the 

material parameter c.  This result suggests that the DTA becomes increasingly nonlinear after 
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middle age, while the AA becomes nonlinear at a much younger age.  This trend is again similar 

to that found for the changes in MTM for DTA and AA as a function of age. 

 

Table 3-4:  Constitutive model parameters for nonaneurysmal aorta fit to equation (3.4) 
 

Abdominal Aorta 
Specimen Age c A1 A2 A3 

1 25 DNC 
2 26 DNC 
3 32 4.874 12.015 6.461 1.182 
4 39 0.752 26.893 20.388 2.929 
5 44 42.719 4.499 4.359 2.108 
6 47 1.583 30.448 19.107 3.138 
7 66 3.47 13.01 19.189 3.972 

 

 

Table 3-5:  Constitutive model parameters for nonaneurysmal descending thoracic aorta fit 
to equation (3.4) 
 

Descending Thoracic Aorta 
Specimen Age c A1 A2 A3 

1 25 DNC 
2 26 DNC 
3 32 DNC 
4 39 DNC 
5 44 DNC 
6 47 0.573 10.956 27.526 3.576 
7 66 13.48 8.585 14.702 1.23 
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3.3.3 Abdominal Aortic Aneurysmal Wall 
 

3.3.3.1 Results 
 
AA and AAA specimens fit the response functions well, with average R2 values of 0.94 ± 0.02 

and 0.87 ± 0.03, respectively.  Typical AA and AAA response function plots display a 

significant amount of anisotropy, with preferential stiffening in the circumferential direction for 

the AAA tissue as compared to age-matched AA tissue (Figure 3-5).  Figures 3-5, 3-6, and 3-7 

also display the exponential mechanical response that was present in all AA and AAA 

specimens.  Moreover, the contour plots revealed a significant degree of asymmetry, which 

clearly indicates the presence of mechanical anisotropy.  We also observed negligible shear 

stresses in our experimental data.  These results suggested the use of an anisotropic strain energy 

function.  While a four parameter Fung elastic model was initially utilized, it was found unable 

to fit the experimental data with physically realistic parameter values (see Discussion).  

Based on the above considerations, we assumed AA and AAA tissue could be modeled 

using the following strain energy function developed by Choi and Vito [86] for canine 

pericardium and used for native and chemically modified bovine pericardium [77]  

)( 3eeebW LLθθ3
2

LL22
12

θθ12
1 EEbEbEb

0 −++= .                                     (3.10) 

One advantage of equation (3.10) is the explicit separation of contributions from each Green-

strain tensor component, reducing the degree of parameter covariance.  In order to derive 

physically reasonable bounds for the constitutive parameters in (3.10), the following analytical 

biaxial analyses were performed [76].  First, consider a biaxial specimen being stretched in the 

circumferential direction (λθ>1) while being held to the same stretch in the longitudinal direction 

(λL=1).  We must apply a positive stress in the θ direction (Sθθ>0) in order to achieve the desired 
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stretch, while also applying a positive stress in the L direction  (SLL>0) to keep λL=1.  Similarly, 

if we apply a positive stretch in the L direction (λL>1) while maintaining the circumferential 

stretch (λθ=1), we require both SLL>0 and Sθθ>0, respectively.  The second Piola Kirchhoff 

stresses derived from (3.10) are  

( )LLθθ3
2

θθ12
1 EEb

LL3
Eb

θθ10θθ eEbeEbbS +=                                       (3.11) 

and 

( )LLθθ3
2

LL22
1 EEb

θθ3
Eb

LL20LL eEbeEbbS += .                                     (3.12) 

Noting that bo>0 for all deformations, cases 1 and 2 require, respectively,  

.1λ       ,1λ  

,1λ       ,1λ  

=>∀>>

=>∀>>

θLLL2LL3

Lθθθ3θθ1

            0Eb       0,Eb

            0Eb       0,Eb

                            (3.13) 

Therefore, b1 > 0, b2 > 0, and b3 > 0 must remain positive in order for these parameters to 

remain physically reasonable.   

When applying these constraints, equation (3.10) fit all of the individual specimens well 

with an average R2 of 0.95 ± .02 and 0.90 ± .02 (mean ± SEM) for the AA (Table 3-6) and AAA 

(Table 3-7) groups, respectively.  Average stress vs. strain plots for the AA and AAA display the 

increase in stiffness and decrease in extensibility of the biaxial response of AAA tissue as 

compared to AA tissue (Figure 3-6).  The material parameters for the constitutive model (3.10) 

fit to the averaged dataset and the ± 95% C.I. datasets are given in Table 3-8. 
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Table 3-6:  Constitutive model parameters for the nonaneurysmal abdominal aorta 

 
Abdominal Aorta 

Specimen bo (kPa) b1 b2 b3 sqrt(b1/b2) ELL,max/Eθθ,max W120 (kPa) R2 

1 0.13 391.6 302.6 309.8 1.14 1.00 1.3 0.90 

2 0.09 370.4 269.3 276.2 1.17 0.71 2.9 0.86 

3 0.20 194.7 361.4 206.3 0.73 0.85 4.1 0.99 

4 0.39 70.4 53.2 40.4 1.15 1.15 8.6 0.99 

5 0.18 698.5 607.2 498.3 1.07 1.00 2.4 0.97 

6 0.87 522.1 410.8 332.0 1.13 1.21 5.7 0.96 

7 0.88 39.1 53.6 45.2 0.85 0.55 10.6 0.96 

8 0.11 166.9 185.8 150.1 0.95 1.26 3.3 0.99 

MEAN 0.36 306.7 280.5 232.3 1.02 0.96 4.87 0.95 

SEM 0.12 81.4 65.9 54.7 0.06 0.09 1.14 0.02 

 

 

Table 3-7.  Constitutive model parameters for the AAA wall specimens 
 

Abdominal Aortic Aneurysm 

Specimen bo (kPa) b1 b2 b3 sqrt(b1/b2) ELL,max/Eθθ,max W120 (kPa) R2 

1 0.01 4791.3 5756.4 3624.0 0.9 3.70 3.4 0.87

2 0.08 313.2 356.4 256.3 0.9 1.74 3.6 0.92

3 0.49 488.9 305.0 113.2 1.3 1.71 4.1 0.93

4 0.37 222.2 239.1 208.0 1.0 0.74 4.9 0.98

5 0.61 733.9 1318.5 671.6 0.7 2.11 2.8 0.97

6 0.07 1146.3 949.2 960.8 1.1 2.89 1.9 0.98
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Table 3-7 (continued)      

0.65 570.2 293.8 357.8 1.4 1.06 0.83

8 1.14 308.1 284.3 1.0 0.43 4.8 0.76

9 657.7 346.8 435.8 1.4 0.98 1.1 

10 0.10 289.5 152.4 179.2 0.80 4.3 0.98

11 0.18 249.4 208.7 1.0 1.98 7.2 

 

7 9.5 

245.2 

0.15 0.92

1.4 

261.3 0.97

12 0.04 2107.5 971.4 1569.5 1.5 1.11 4.3 0.81

13 1.51 298.1 308.3 282.5 1.0 1.08 8.4 0.96

14 0.07 769.2 1407.0 724.9 0.7 1.03 2.3 0.98

15 0.32 1048.3 2042.7 1115.6 0.7 1.51 3.0 0.94

16 0.05 300.6 135.7 153.6 1.5 0.30 2.6 0.97

17 0.46 914.4 440.5 795.4 1.4 2.37 6.0 0.90

18 0.11 549.1 217.5 205.3 1.6 1.31 3.6 0.94

19 0.20 274.6 408.5 244.2 0.8 0.65 4.9 0.98

20 0.68 1125.3 908.1 1091.0 1.1 1.86 3.0 0.95

21 0.31 4996.9 3784.3 4645.1 1.1 0.64 1.4 0.82

22 0.36 194.3 184.4 184.4 1.0 4.60 2.6 0.62

23 0.19 172.7 73.0 110.4 1.5 1.81 1.9 0.90

24 0.02 580.5 640.6 416.2 1.0 0.76 1.0 0.71

25 0.35 275.0 194.5 325.9 1.2 3.59 3.7 0.82

26 0.11 3008.8 2160.8 2300.1 1.2 1.21 1.1 0.95

MEAN 0.33 1015.3 928.0 824.0 1.14 1.62 3.75 0.90

SEM 0.07 256.3 254.1 218.0 0.05 0.21 0.42 0.02
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Table 3-8:  Constitutive model parameters for the averaged AA and AAA datasets 

 
 Averaged Data Fit 

 Group bo (kPa) b1 b2 b3 sqrt(b1/b2) ELL,max/Eθθ,max W120 (kPa) R2 

AAA 0.13 613.7 537.1 522.9 1.07 1.290 5.6 0.97Upper 95% 

C.I. AA 0.27 214.6 210.6 187.8 1.01 0.963 11.8 0.99

          

AAA 0.14 477.0 416.4 408.3 1.07 1.300 3.2 0.97Averaged 

Dataset AA 0.32 141.1 143.3 127.9 0.99 0.965 5.6 0.99

          

AAA 0.15 379.6 331.3 327.8 1.07 1.314 2.2 0.98Lower 95% 

C.I. AA 0.38 99.2 103.5 92.5 0.98 0.964 3.9 0.99
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Figure 3-5:  Representative AA and AAA stress contour plots 
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Figure 3-6:  Averaged datasets and model fits for AA and AAA tissue 
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Figure 3-7:  Strain energy as a function of equibiaxial strain for the isotropic [38] and 
anisotropic (equation 3.10) constitutive models 
 

It can be seen from Table 3-6, 3-7, and 3-8 that the average magnitudes of the 

constitutive model parameters b1-3 for the AAA specimens remain larger than that for the AA 

specimen fits.  In addition to the ratio of peak strains in equibiaxial tension, the following 

anisotropy parameter [86]  










2

1

b
bsqrt

                                                         (3.14) 

was calculated and compared across groups.  It should be noted that although this parameter is a 

measure of the overall relative contribution of b1 and b2 to the strain energy, it does not account 

for the changes in the degree of anisotropy as a function of strain.  The average values of this 

parameter were 1.02 ± 0.06 and 1.14 ± 0.05 for the AA and AAA groups, respectively (p=0.27).  

In addition, as a measure of overall stiffness, the strain energy at an equibiaxial tension of 120 
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N/m (W120) was calculated for each specimen and compared across groups.  The average values 

for this parameter were 4.87 ± 1.14 and 3.75 ± 0.42 for the AA and AAA groups, respectively 

(p=0.26).  As can be seen from Tables 3-6 and 3-7, W120 was lower for those specimens that 

displayed higher b1-b3 values.  This was primarily due to there being lower strain components at 

an equibiaxial tension of 120 N/m for these “stiffer” specimens. 

 

3.3.3.2 Discussion 
 

The primary microstructure of the abdominal aortic media consists of layers of collagen and 

elastin arranged in a fibrous network, with the fibers primarily running in organized and 

orthogonal directions of the blood vessel.  Because AAA is associated with the degradation of 

these fibers [53, 87, 88], one might expect to see differences in both the content and structure of 

these fibers in AAA as compared to AA.  Comparing the anisotropic behavior of human 

abdominal aorta between diseased states may provide evidence for structural changes as a result 

of aneurysm formation.   

The average value of Eθθmax was significantly lower for AAA as compared to AA tissue 

(Figure 2-12A), suggesting a decrease in circumferential distensibility for AAA as compared to 

AA.  This result was supported by the decrease in the ratio of peak strains (ELL,max / Eθθmax) 

(Tables  3-6 and 3-7) and eA (Figure 2-12B) for AAA than for AA.  These results are consistent 

with the reported loss of elastin in this tissue [53, 87, 88].  The larger values of the anisotropy 

index (3.14) for most of the individual (Tables 3-6 and 3-7) as well as averaged (Table 3-8) 

AAA specimens gives further evidence of an increase in the circumferential stiffening of this 

tissue as compared to nonaneurysmal tissue.  This result is confirmed by the preferential 

circumferential stiffening seen in most of the AAA stress contour plots (Figure 3-5).  This 
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increase in circumferential stiffness is in agreement with our previous uniaxial tensile testing 

results, which demonstrated that circumferentially oriented specimens are stiffer than 

corresponding longitudinal specimens [89].  The fact that the anisotropic index (3.14) did not 

consistently suggest a preferred direction for the current study (Tables 3-6 and 3-7) is similar to 

previous reports on the biaxial mechanical response of human ascending thoracic aneurysmal 

tissue in which this tissue also did not suggest a consistent preferred material direction [70]. 

In preliminary investigations, our first approach for the choice of W was the popular 

Fung-type exponential constitutive relation of the form 

W = ½ c(eQ-1)                                                       (3.15) 

where 

Q = AijklEijEkl                                                       (3.16) 

and c and the Aijkl are material parameters, with i,j=θ,L,R. Neglecting all shear terms 

(SθR=SLR=SRR=0, EθR =ELR=0), equation 3.16 becomes  

2 2 + 2A3Eθθ ELL                                    (3.17) Q = A1Eθθ + A2ELL

While the constitutive relation given by (3.15, 3.17) fit our biaxial data well, the resulting 

constitutive parameters were not physically reasonable.  Using a similar theoretical formulation 

of a strip biaxial test as previously described by Humphrey [76], it can be shown that all of the 

constitutive parameters in (3.15, 3.17) must remain positive in order to be physically reasonable.  

For 1/8 of our AA and 10/26 of our AAA specimens, the A3 parameter resulted in a negative 

number when using these equations.  When constraining this parameter to be positive in the 

nonlinear regression, this value approached zero and resulted in an insignificant fit.   

 The negative A3 was thought to be due to the intrinsic model covariance resulting from 

the eQ term in (3.15).  It is interesting to note that the constitutive relation given by (3.10) avoids 
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this covariance by separating out each of the individual exponential terms and allowing each 

strain tensor component (e.g., exp(1/2 ELL
2)) to independently contribute to the total strain 

energy. Constitutive model parameter covariance has recently been identified as a major source 

of modeling error [90, 91].  Our results are similar to that reported by Choi and Vito [86], who 

also noted negative A3 parameter values when fitting their canine pericardial data to the Fung-

elastic model.  These results underscore the need for further research into this important area for 

phenomenological constitutive model approaches in organ-level biomechanical studies. 

Prior research in our laboratory has involved the derivation of a population-wide stress-

strain relation from the uniaxial tensile testing of AAA tissue [38].  In order to compare the 

differences in the previous isotropic relation derived from uniaxial testing [38] with the 

anisotropic relation derived here from biaxial testing, the strain energies for both models were 

plotted for an equibiaxial strain state up to 12% strain (Figure 3-7).  Note that the isotropic strain 

energy displays significantly larger strain energy at lower strains as compared to that for the 

anisotropic model (Figure 3-7).  Note also that the mechanical response predicted from the 

biaxially derived constitutive model exhibits a marked increase in slope compared to that 

predicted from the uniaxially derived model at a strain value of 12% (325 MPa vs. 31 MPa, 

respectively; Figure 3-7). 

  One possible explanation for this difference may be the predominant reorientation of 

collagen fibers in uniaxial tension.  Collagen fiber recruitment is primarily a function of two 

components: the successive recruitment of crimped collagen fibers and the reorientation of these 

fibers into the primary loading axis.  For a uniaxial test, all fibers are free to align themselves in 

the direction of loading, while in biaxial tension these fibers are not available to rotate as a result 

of the orthogonally applied load.  The earlier recruitment and preferential alignment of collagen 
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fibers for AAA in uniaxial tension would result in the stiffening effect observed here (Figure 3-

7).  Another potential explanation for the shorter toe region in the uniaxial response is possible 

presence of a substantial preload in uniaxial tensile tests.  Our results therefore demonstrate that 

the uniaxial response of AAA tissue is much stiffer in the lower strain regions (less than about 

10%) and is less stiff in the higher strain regions as compared to the biaxial response of this 

tissue. 

 

 

3.3.4 Intraluminal Thrombus 
 
 

3.3.4.1 Results 
 
Stress contour plots from the ILT response functions displayed symmetry about the axis of unity 

(Figure 3-8), suggesting isotropy for this material.  Note also the contours remain nearly 

equidistant from one another in the low and high strain regions, suggesting a lack of a sharp 

increase in stress with increasing strain (Figure 3-8). 

Due to the isotropic form of the response function plots, an isotropic formulation of W 

was considered: 

( ) (∑∑
∞

=

∞

=

−−=
0i 0i

j
2

i
1ij 3I3IFW )                                            (3.18) 

 where Fij are material constants and I1 and I2 are the first and second invariants of the Left 

Cauchy-Green strain tensor.  W1 (W1 = ∂W/∂I1) vs I1 plots were investigated in order to 

determine how many and which terms should be included in the infinite sum of (3.18).  The 

linear relationship between I1 and I2 for all ILT specimens (Figure 3-9) warrants the exclusion of 
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I2 from the strain energy function.  The linearly increasing relationship between W1 and I1 

(Figure 3-9) suggests a quadratic term at most is needed to fully capture the mechanical 

response of the luminal layer of ILT.  The constitutive relation fit to the ILT biaxial data was 

then 
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The results for the nonlinear regression of biaxial data to (3.19) are given in Table 3-9.  The 

averaged parameters here can be used as a population-wide constitutive relation for the luminal 

ILT, since there exists no nonlinear interactions between these parameter values. 
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Table 3-9:  Constitutive model parameters for the luminal layer of ILT 

 
 

ILT CONSTITUTIVE RELATION 

Specimen F1 F2 R2 

1 4.43 11.81 0.96 

2 18.59 1.71 0.92 

3 12.07 14.05 0.98 

4 6.36 5.06 0.80 

5 3.40 5.55 0.97 

6 10.20 4.55 0.95 

7 3.86 17.27 0.99 

8 5.46 7.90 0.85 

9 7.47 10.48 0.83 

MEAN 7.98 8.71 0.92 

SEM 1.64 1.69 0.02 
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Figure 3-8:  Representative stress contour plot for the luminal layer of ILT 
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Figure 3-9:  I1 versus I2 and ∂W/∂I1 versus I1 for a representative ILT specimen 
 
 

3.3.4.2 Discussion 
 

Stress contours indicated the presence of mechanical isotropy, which was further supported by 

similar peak stretch and MTM values in the circumferential and longitudinal directions for the 

equibiaxial protocols.  The isotropic mechanical response of the ILT was successfully captured 

using a second order polynomial strain energy function. 

The effect of the ILT on AAA wall stresses has been described previously by our 

laboratory and others [55, 92-96].  For example, Mower et al. [95] reported a 30% reduction in 

peak wall stress in the presence of ILT in large axisymmetric AAAs.  We showed that including 

the ILT in patient-specific stress analyses of AAA markedly influences both the magnitude and 

distribution of wall stress [55].  All of the studies to date, however, have made the assumption 

that the ILT is an isotropic homogenous material.  The gross appearance of three distinct layers 
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of ILT [59] suggests this may be an inappropriate assumption.  The present work investigated the 

anisotropy of the luminal layer of ILT by isolating and testing it in a multi-axial loading 

condition.   

Likewise, the constitutive relations derived for an isotropic material tested uniaxially 

versus biaxially will be different.  To illustrate this for ILT, the strain energy for the constitutive 

relation derived by Wang et al. [59] for the luminal layer is compared to that derived here for the 

equibiaxial strain case (Figure 3-10).  We noted similar findings when comparing the uniaxial 

vs. biaxial constitutive relations for the AAA wall [57].  These comparisons underscore the 

importance of using appropriate experimental methods when deriving constitutive relations for 

soft biological materials. 

Our results show that the biaxial mechanical behavior of the luminal layer of ILT 

displays an isotropic response.  This mechanical response can be modeled using a strain energy 

function that is a second-order polynomial of the first strain invariant.  Although the derivation 

of an isotropic relation for ILT has been reported previously, the derivation of an isotropic 

material from uniaxial testing may lead to large errors in the mechanical response (Figure 3-10).  

The utilization of the biaxially-derived constitutive relation for the luminal layer of ILT into 

patient-specific AAAs may lead to improved wall stress estimates, and therefore a better 

indication of those AAAs at high risk of rupture. 
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Figure 3-10:  Strain energy as a function of equibiaxial strain for the uniaxially[59] and 
biaxially-derived constitutive models of the luminal layer of ILT 

 
 
3.3.5 Limitations 
 

Nonaneurysmal Abdominal Aorta 

One discrepancy of our data is the lack of ability of the organ donor specimen 10 to be 

appropriately modeled by the Fung-type strain energy function (see Table 3-2).  The reason for 

this is most likely due to the “young” appearance of this tissue as well as its biomechanical 

response.  That is, the specimen had minimal calcifications and displayed a more sigmoidal 

response as compared to all other specimens of the same age group.  This shape resulted in 

nonconvergence when fitting the Fung-elastic model due to its lack of ability to capture multiple 

convexities.  This possibility should be kept in mind whenever applying a Fung-type exponential 

strain energy function.  That is, one cannot simply use age to determine the appropriate form of 

W, but must include other considerations.  The presence and amount of atherosclerotic plaque 
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present, for example, should also be taken into account when developing an appropriate 

constitutive model for aortic tissue.   

Another limitation of the study looking at the age-dependency of the nonaneurysmal 

aorta is the use of two separate strain energy functions to model the same tissue.  This could have 

been avoided by using a sum of the Rivlin and Fung-type strain energy functions, but this would 

have resulted in cumbersome models with a large number of material parameters.  For the 

present study it was thought to be more important to describe the large change in biomechanical 

response with age than to develop a single form of W for abdominal aorta across all ages.  

Finally, in the long-term structurally-based approaches for constitutive modeling would offer a 

means for improved understanding of the underlying mechanisms responsible for the observed 

changes.  As previously demonstrated [97], this will require incorporation of quantitative 

morphological on tissue structure data not yet available for the aortic wall. 

 

Descending Thoracic Aorta 

Similar to the biaxial tensile testing data, the constitutive model data reported here for the DTA 

is limited by the lack of sample size for the Group 1 and Group 3 specimens.  Another limitation 

in modeling the DTA specimens was the inability of the proposed constitutive model to 

adequately describe the Group 1 AA and Groups 1 and 2 DTA specimens.  Similar to the Group 

1 specimens for the nonaneurysmal abdominal aorta (Section 3.3.1), these specimens displayed a 

biconcavity that was unable to be captured by the proposed Fung-elastic constitutive model.  

This result reinforces the conclusion that the DTA becomes stiffer and displays a more abrupt 

change in slope at a later age than the AA.  Since the primary purpose of this portion of the 

present work was to investigate the changes in biaxial mechanical behavior for DTA versus AA 
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specimens and not to derive constitutive models for these tissues, no attempt was made to fit the 

DNC specimens in Table 3-4 and 3-5 to a polynomial constitutive relation similar to equation 

3.8.   

 

AAA Wall 

A primary limitation of the current work is the assumption that the aortic tissue is assumed to be 

a homogenous material.  This assumption may lead to even more pronounced errors in the case 

of AAA given the atherosclerotic plaque formations typical in this disease.  The reason that this 

assumption is necessary stems from the lack of experimental data/evidence of the material 

inhomogeneity present in AAA.  Of course, the presence of calcifications within the AAA wall is 

known to exist and has recently been included in recent finite element simulations of AAA in our 

laboratory [98].  The inhomogeneity of the structural components in the AAA wall in directions 

tangent to the surface have yet to be quantified.  Such information may be beneficial in 

identifying local sites of weakness or high stress within the AAA.   

While the constitutive model (3.10) fit all of the AAA and age-matched AA specimens 

well, there are some disadvantages associated with this phenomenological approach to modeling.  

While the model parameters in b1 and b2 represent the contribution of the strain energy in the 

circumferential and longitudinal directions, respectively, and the parameter b3 represents the 

coupling between the material axes, no more information can be gleaned from these parameters 

concerning the structural organization of the soft tissue which may have been responsible for the 

changes in biomechanical behavior of the abdominal aorta in the presence of aneurysm.  One 

possible method for determining such information would be to approach the modeling of these 

tissues from a microstructural approach.  That is, in contrast to the phenomenological approach 
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to soft tissue constitutive modeling, the structural method utilizes the structural organization of 

the tissue and relates it to the macroscopic mechanical behavior.  Changes in the parameters of 

such a model between AAA and AA tissue would more likely quantify additional information 

regarding the microstructural changes that occur in the development of aneurysmal disease. 

 

Intraluminal Thrombus 

There are several limitations to the biaxial testing of the ILT.  Each ILT specimen was taken 

from the luminal layer of ILT from patients undergoing elective repair of their AAA.  There was 

only one ILT specimen procured from each AAA patient, and as such no specific information 

regarding the heterogeneity of the luminal layer of ILT can be gleaned.  The consistency of the 

results as noted by the small errors in constitutive parameters (Table 3-9), however, suggests that 

the mechanical response of the luminal layer does not vary largely from patient to patient.  In 

addition to those limitations described above, it should also be noted that the ILT has a high 

water content.  The constitutive modeling developed here, however, neglects the presence and 

effects of the water within this tissue.  Further studies that investigate the contribution of fluid 

movement and pressure dissipation within the ILT will help to answer the validity of this 

assumption. 

 

Parameter Estimation 

A primary concern in the constitutive modeling of soft biological tissues is the issue of parameter 

uniqueness and parameter variability.  This becomes even more of an issue when dealing with 

constitutive models that contain parameters that are covariant as in equation ().  It is interesting 

to note that in early trials the Fung-elastic model was unable to adequately capture the biaxial 
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mechanical response of AAA tissue.  This was thought to be primarily due to the extreme 

covariance exising between the parameters in this model.  When applying the model used by 

Choi and Vito to the AAA wall data, these issues did not arise.  The separation of the exponential 

terms in this equation as compared to the Fung-elastic equation was thought to decrease the 

amount of covariance between the parameters in this model.   

In order to test whether the constitutive model parameters reported for the averaged AA 

and AAA models were global and not local minima, the following analysis was performed.  The 

initial guesses for the parameters utilized in the regressions reported in this chapter where varied 

by one order of magnitude below and two orders of magnitude above those used in the current 

analysis (all bi=1).  In other words, the intial guesses for the parameters b0, b1, b2, and b3 where 

each individually and sequentially changed from 1 to 0.1 and 100, respectively.  The results from 

these regressions were then compared to the values reported for the averaged AA and AAA data 

fits in Table 3-8.  Six of the eight regressions in the AAA group resulted in the exact parameters 

shown for that group in Table 3-8.  The remaining two regressions resulted in a maximum 

difference of 0.7% for all of the parameter values.  Seven of the eight regressions in the AA 

group resulted in the exact parameters shown for that group in Table 3-8.  The remaining 

regression resulted in a maximum difference less than 0.1% as compared to the average 

parameters in Table 3-8. 

 In addition to the above analysis, the averaged AAA wall dataset and its parameter values 

were investigated further.  Since the residuals were not found to be normal in the regression 

analysis, no 95% confidence intervals on the model parameters can be directly constructed from 

the regression analysis.  In order to quantifiy the variability in these parameters (in addition to 

the analysis involving the fitting of the 95% CI dataset), a bootstrapping analsysis was 
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performed.  Simply stated, bootstrapping involves the creation of several data sets that each 

mimics the statistical properties of the original dataset.  Each of these generated data sets is 

analyzed like the original one and the variability amont the resulting coefficients is taken to 

represent the uncertainty in the actual estimates.  The methods used here are those used 

previously by Yin et al. [99].  For a detailed description of these methods the reader is referred 

elsewhere [99, 100].  For this analysis, the stress is assumed to consist of the sum of the actual 

stress, smooth errors representing deviations of the model with reality, and rough errors 

representing experimental noise.  A pool of smooth curves was created in Matlab by fitting each 

of the residual plots for the averaged AAA model fits.  These smooth curves were meant to 

represent the systematic deviations of the model from reality.  A pool of rough errors was also 

created by subtracting the smooth curves from the residual values.  These rough errors were 

meant to represent the presence of experimental noise.  Each bootstrapped data set was then 

constructed as the sum of the model (averaged AAA in Table 3-8) with randomly selected 

smooth error curve and randomly selected rough errors.  For the current investigation, 50 

replicate or ‘bootstrapped’ data sets were constructed and fit to the averaged constitutive model 

(equation 3.10).  A plot of each of these bootstrapped parameter sets along with the parameters 

from Table 3-8 is shown in Figure 3-11.  From this figure a qualitative estimate of the parameter 

variability can be constructed.   
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Figure 3-11:  Model parameter variability of the averaged AAA constitutive model using 
bootstrapping methods.  Open circles are the bootstrapped parameter sets, while dashes 
correspond to the averaged AAA model in Table 3-8 
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4.0 3D RECONSTRUCTION AND MESHING OF AAA 

 

 

4.1 INTRODUCTION 

 

4.1.1 Reconstruction of Biological Tissues 
 

The reconstruction of biological tissues from medical imaging data has been performed by 

engineers and scientists for decades in order to investigate the stresses acting on these tissues in-

vivo.  With recent advances in medical imaging and computational power, the reconstruction of 

tissues within the body has extended to virtually every organ, bone, soft tissue, and blood vessel 

within the human body.  Several different imaging modalities have been used for the 

reconstruction of biological tissues, including sonography [101], intravascular ultrasound [102], 

biplane angiography [103], magnetic resonance imaging (MRI) [104], and computed tomography 

imaging (CT) [28, 33-35, 105].  For the purposes of reconstructing the precise 3D geometry of 

AAAs, the use of CT has been used by our laboratory and others [28, 33-35, 55].  Due to the 

complex geometry present in the aneurysmal abdominal aorta, the use of a biquintic finite 

element interpolation technique has recently been utilized in our laboratory to smooth the CT 

data in 3D [106].  Wang et al. has also more recently included the presence of the ILT into 

patient-specific 3D reconstructions of AAA from CT [55].   
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4.1.2 Current Reconstruction Protocol 
 

The 3D reconstruction of patient specific AAA with ILT reported by Wang et al. [55] acted as a 

starting point for the 3D reconstruction of AAA utilized in the current work.  The current 

reconstruction protocol used in our laboratory is an updated version of this protocol (see Section 

4.2.8).  A custom-written program in IDL (v. 5.6, Research Systems, Inc) was used to digitize 

the luminal surface of the AAA wall and ILT when present utilizing splines constructed from 

seven control points.  The output of this program was then input into a C program which 

smoothes the point cloud in 3D using biquintic finite element interpolation [107].  A custom-

written Matlab (v. 6.5.0 Release 13, The MathWorks, Inc.) program then took this point cloud 

and created 2D vertex files, one for each constant longitudinal slice of the AAA point cloud.  

These vertex files were read into a commercially available executable program, which created a 

surface IGES file readable by the surface CAD Rhinoceros (v. 2.0, Robert McNeel and 

Associates).  The solid portion of the ILT was then created in Rhinoceros using Boolean 

operations on the corresponding AAA and ILT solids.  Once the 3D solid AAA model (STL file) 

was created in Rhinoceros, it was meshed into quadrilateral (AAA wall) and hexahedral elements 

(ILT) using the meshing program True Grid (v. 2.1, XYZ Scientific Applications, Inc.).  The 

mesh files for the wall and ILT were then read into a custom-written Matlab program which 

compiled and printed out an input file readable by the commercially-available finite element 

solver ABAQUS (v. 6.3, Hibbitt and Karleson, 2003).  Figure 4-1 summarizes the steps 

currently used to prepare a finite element model of a patient specific AAA readable by the finite 

element solver ABAQUS.  All of the above steps for the patient-specific reconstruction of AAA 

used in the current study are detailed in the following sections. 
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Figure 4-1:  Summary of current AAA reconstruction protocol 
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4.2 Methods 

 

4.2.1 Computed Tomography of AAA 
 

A computed tomography (CT) scan uses X-rays to produce detailed pictures of structures inside 

the body. A CT scanner directs a series of X-ray pulses through the body. Each X-ray pulse lasts 

only a fraction of a second and represents a “slice” of the organ or area being studied.  The end 

result of a CT scan is a grayscale image, with white areas typically corresponding to dense 

tissues such as bone, gray areas indicating brain tissue, muscles and other soft tissues, and black 

areas corresponding to air-filled spaces as in the lung.  For properly-timed contrast enhanced CT 

scans, free flowing blood also displays in pure white.  A typical slice from an abdominal CT scan 

showing the cross section of a AAA can be seen in Figure 4-2.  For the more interested reader, a 

detailed description of the CT scan process and why it is used clinically is presented in the 

following website (http://my.webmd.com/hw/health_guide_atoz/hw233596.asp). 

All of the patients analyzed in the present work underwent CT imaging for the general 

purpose of diagnosis and treatment of their aneurysm.  Each patient’s CT scan was based on an 

imaging protocol that has previously been developed for the visualization of the wall and ILT 

within their AAA [55].  Typically, this involved the injection of an iodine-based contrast agent 

(120 ml at 3ml/sec) prior to scanning.  After reconstruction of the raw CT data, the dataset was 

sliced into longitudinal slices of 2.5mm, which typically resulted in ~48 single images for an 

approximately 12 cm long AAA.  
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Figure 4-2:  Typical image slice from an abdominal CT scan 
 

 

4.2.2 Segmentation 
 

The term “segmentation” is used in image processing to describe the isolation of a particular 

body within a medical image.  For the purposes of this work, segmentation will refer to the 

isolation and identification of the AAA vessel wall, the lumen containing free floating blood, and 

the ILT that typically exists between these two.  Due to the location of the abdominal aorta, the 

region of interest (ROI) within each CT image will consist of the region anterior to the 

intervertebral disc (or vertebrae).  In addition, the longitudinal ROI will be defined as that 

portion of the aorta distal to the renal artery bifurcation yet proximal to the aortic bifurcation.  A 

custom-written program in IDL (v. 5.5.2, Research Systems Incorporated) was used to segment 
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the AAA wall and ILT.  In this program, 2D splines with seven control points were used to 

outline the contour of the AAA wall as well as the border of the AAA lumen (Figure 4-3A).  In 

cases where the ILT is crescent shaped, the spline representing the luminal contour is extended 

outside the AAA wall in regions where there is no ILT thickness (Figure 4-3B).  This created 

surfaces (and the subsequent solids) that allowed the Boolean creation of the solid ILT (see 

Section 4.2.5).  The outputs of the IDL program are a set of files, one file for each slice of the 

AAA wall and ILT.  The filenames for these are ‘Draw&.%%%’, where %%% represents the 

image slice of interest, ranging from the first slice (‘000’) to the last slice (e.g., ‘047’) and & is 

either 0 or 1 for the AAA wall or luminal contour, respectively.  Each of these files consists of 

two columns corresponding to the X Y pixel locations of the contour within each image.  For a 

CT image file, the entire image is divided into a 512 x 512 array of pixels.  These slice files 

provide the necessary data set for the next step in the reconstruction process – preprocessing for 

3D smoothing. 

A BA B

 

Figure 4-3:  Segmentation of AAA wall (yellow) and concentric (A) and crescent-shaped (B) 
ILT (red) 
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4.2.3 Preprocessing for 3D Smoothing 
 

The purpose of this step in the reconstruction process is two fold – to combine all of the 

data from the slice files (e.g., Draw0.012) into a single file that is readable by the 3D smoothing 

program, and to perform any necessary 2D smoothing.  The preprocessing program is called 

‘recon3D.txt’ and was written for the user-interface programming language Mathematica (v. 5.0 

Wolfram Research) by Dr. David Wang, a recent graduate of our laboratory.  A print out of this 

file can be seen in Appendix B.  The details of this program can be found in Dr. Wang’s PhD 

thesis [40].  The input required for this program, in addition to each of the slice files, is another 

file (named ‘input.dat’) containing a list of the slice files, the slice thickness for the CT images 

(typically 2.5mm), as well as the pixel dimensions (e.g., 0.76:0.76 means each pixel is 0.76 mm 

by 0.76 mm wide).  The output of ‘recon3D.txt’ is a text file named ‘Draw&XYZ.txt’ where & is 

again 0 or 1 for the AAA wall or luminal contour, respectively.  This file contains three columns 

corresponding to the (X, Y, Z) spatial coordinates of a 3D point cloud with 72 points for each 

longitudinal location (in increments of 5 degrees, 0:5:360).  Therefore, for a contour containing 

52 slice files, this 3D point cloud will consist of 52*72 = 3744 data points.  Saving the 

Draw&XYZ.txt as a .dat file (e.g., ‘wall.dat’) and inserting the following code at the beginning 

of this file 

1 # 1 

1 1 

where # corresponds to the number of data points (e.g., 3744), finalizes this portion of the 

reconstruction protocol, as this .dat file can then be read into the 3D smoothing program detailed 

below.  A Matlab script (idl2dsmith.m, Appendix C) was created that automatically creates the 

input.dat file as well as launching Mathematica for the execution of the recon3d.txt program. 
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4.2.4 3D Smoothing 
 

The 3D point cloud, while derived from smooth 2D splines, is still not smoothed in three 

dimensions, as errors originating from the differences in location of the AAA wall and lumen 

from slice to slice in the longitudinal direction still exist.  In order to smooth the data point cloud 

in three dimensions, a biquintic finite element interpolation technique previously developed was 

utilized [107].  This method generates a contiguous surface of C2 continuity, allowing 

computation of the finite strain and curvature tensors over the entire surface with respect to a 

single in-surface coordinate system. The Sobolev norm is used in this technique to stabilize the 

interpolating polynomial at boundaries and in regions of sparse data. A major advantage of this 

program is its ability to smooth a set of unstructured grid of data points in 3D using a single 

interpolation scheme.  The output of this program is a ‘.plt’ file of a 3D triangular mesh directly 

importable into the post-processing program Tecplot (v. 9.0, Dundas Softward Limited).  In 

addition to the 3D smoothed triangular mesh, this output file also contains the first and second 

principle curvatures at each node.  Another Matlab script was created (dsmith2iges, Appendix 

D) which takes the .plt file created by the 3D smoothing program and creates an IGES file 

containing curves corresponding to constant longitudinal slices from the smoothed .plt mesh.  An 

IGES file (extension .igs) is created for both the AAA wall contour as well as the luminal 

contour.   
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4.2.5 Surface and Solid Modeling 
 

Once the IGES files are created for both contours of interest, these files are imported into the 

NURBS (Non-Uniform Rational B-Spline) software Rhinoceros (v. 2.0 SR2, Robert McNeel & 

Associates).  Using this software, both sets of IGES curves are lofted into smoothed 3D surfaces 

(Figure 4-4).  The AAA wall IGES surface is then saved and is ready for meshing.  These 

surfaces files can easily be ‘capped’ on both ends to create two solid surfaces, one corresponding 

to everything within the AAA wall and one corresponding to the free flowing blood (or, if the 

ILT is crescent shaped this will include areas outside of the AAA wall).  In order to create the 

solid volume of ILT, a Boolean operation is performed in which the solid representing the free 

flowing blood (corresponding to red contours in Figure 4-5A) is subtracted from the ‘solid’ 

AAA wall (corresponding to black contours in Figure 4-5A), thus creating a solid corresponding 

to the ILT volume within the AAA (Figure 4-5C).  Therefore, at the end of this step of the 

reconstruction protocol, there are two IGES files, one surface IGES for the AAA wall and one 

solid IGES file representing the ILT. 
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Figure 4-4:  Lofting of IGES splines to create a smoothed 3D surface 
 

A B CA B C

 

Figure 4-5:  Boolean operation on the AAA in order to create the solid ILT 
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4.2.6 Hexahedral Meshing 
 

4.2.6.1 Wall 
 

As detailed in Section 4.2.4, the 3D smoothing program resulted in a .plt file containing a 

smoothed triangular mesh.  Unfortunately, triangular elements must be smaller than quadrilateral 

elements in order to gain the same amount of geometrical accuracy.  This means that 

implementing the triangular mesh for the AAA wall would result in a greater computational cost 

than would a larger (area per element) quadrilateral element.  In addition, the AAA wall, despite 

its tortuosity, can easily be meshed with quadrilateral elements due to its cylindrically-based 

geometry.  For all of the above reasons, the AAA wall was meshed in the 

hexahedral/quadrilateral meshing program TrueGrid (v. 2.2.0.b, XYZ Scientific Applications).  

In brief, for the meshing of the AAA wall surface, the following steps were performed in 

TrueGrid.   

1. Create TrueGrid (TG) curves corresponding to the top and bottom of the AAA 

2. Create a TG surface corresponding to the AAA wall 

3. Create a TG surface block to be used as the AAA wall mesh 

4. Attach the top and bottom of the TG block to the curves created in 1. 

5. Project the entire TG block onto the TG surface created in 2. 

6. Add elements in the longitudinal and circumferential direction within each section of the 

block 

7. Redistribute and smooth the entire TG block using the “unifm” command in TG 

8. Export a .txt file containing the quadrilateral mesh 
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Once the output mesh file was created, this file is used as an input into the ABAQUS 

preprocessing as detailed in Section 4.2.7.   

For the solution of boundary value problems using the finite element method, the accuracy 

of a finite element approximation is known to approach the exact solution as the number of 

nodes (and elements) increases.  Since the computational cost (CPU time) of a simulation also 

increases with increasing mesh density, it is necessary to determine the appropriate mesh density 

required to guarantee an accurate finite element result.  Thus, a mesh independency study was 

performed on the AAA wall in order to determine the minimum number of nodes (and 

corresponding elements) needed to guarantee computational accuracy.  For this purpose, the 

mean stress acting on a representative AAA defined as  

N

σ
σ

N

1i
i

ave

∑
==                                                               (4.1) 

where σi is the stress acting on a given node and N is the total number of nodes was calculated 

for increasing mesh densities.  The total number of nodes is not an accurate measure of mesh 

density, since the surface area of one AAA my differ largely from that of another.  For this 

reason, the total number of nodes within a AAA was normalized to its surface area: 

AreaSurfaceAAA Wall
 AAA Wallof Nodes of Number  Totalf =                                              (4.2) 

and used as a quantitative measure of mesh density.  An asymptotic value for σave as f → ∞ was 

chosen based on the plot of σave versus f and the percent change in σave was analyzed with 

increasing values of f. A cutoff value for f was determined and used as a lower limit of mesh 

density for all AAAs meshed in the current study. 
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4.2.6.2 Intra-luminal Thrombus 
 

The solid ILT was meshed in TrueGrid with the use of first-order hexahedral elements, typically 

with 2-4 elements through the thickness of the ILT.  The use of hexahedral elements for the ILT 

is warranted given recent results which show the extreme number of tetrahedral elements which 

would be required in order to gain an equivalent level of computational accuracy [108].  The 

TrueGrid meshing protocol for the ILT is a modified version of that for the AAA wall.  For the 

ILT, curves must be created for both the luminal and wall contours of the ILT at the proximal 

and distal ends of the ILT solid surface.  In addition, a surface corresponding to both the luminal 

surface as well as the ILT ‘attached to the AAA wall’ must be created.  Similar attachments and 

projections as described in Section 4.2.6.1 are then made from a solid TG block onto the 

appropriate ILT curves and surfaces.  Another .txt file is then exported from TrueGrid containing 

the hexahedral mesh representing the ILT within each AAA.  A similar mesh independency 

study was performed for the solid elements of the ILT as described for the AAA wall in the 

previous section.  For these simulations, the mesh of the AAA wall remained constant, while the 

mean stresses acting on the ILT was analyzed for increasing mesh densities.  In addition, the 

value of the mesh density parameter f was redefined as the number of nodes in the ILT 

normalized to ILT volume instead of AAA wall surface area.  Similar to the AAA wall mesh 

independency study, a cutoff value for ILT mesh density (f) was determined based on the results 

of these simulations. 

 
4.2.7 Preprocessing for ABAQUS Input File Creation 
 

For this portion of the reconstruction protocol, a Matlab script 

(TruGrid_2_ABAQUS_with_ILT.m, , Appendix E) was created that reads in the mesh files 
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(wall and ILT if present) and creates an input file that is ready for execution in the finite element 

solver ABAQUS.  As detailed in Section 5.2.2.3, this involved the definition of a mesh 

independent local material coordinate system that varied longitudinally along the AAA 

centerline.  In addition to these local material coordinate systems, the user-defined constitutive 

relation derived in Section 3.3.3 was also printed out in the input file created by these Matlab 

scripts.  Overall, the most important function of this portion of the reconstruction protocol was 

being able to 1) create a repeatable method for defining the local material coordinates of a AAA 

and 2) streamline the preprocessing and input file creation such that an ABAQUS formatted 

input file can easily be created once the AAA wall and ILT are meshed.  For a sample input file 

created from this portion of the reconstruction protocol, please see Appendix F. 

 

4.2.8 Summary of New Protocol Changes 
 

For the accurate creation of AAA geometry, the reconstruction protocol previously developed by 

Wang [40] was updated in several ways.  The segmentation process was improved with a 

custom-written program in IDL utilizing seven-control point splines.  Previously the 

segmentation was performed in the image processing software Scion Image (v. 4.0.1, 1998 Scion 

Corporation, Frederick, Maryland), which required the manual tracing of luminal and AAA wall 

contours.  Such a method not only was time-consuming and extremely user-dependent, but also 

resulted in a 2D point cloud with considerable amounts of noise. The previous laborious process 

of manually tracing an entire AAA typically required 8 hours, while the new segmentation 

process required less than 3 hours for both the AAA wall and the ILT.  There were also several 

additions to the new reconstruction protocol aimed at providing a computationally more efficient 

finite element solution.  Chief amongst these were the addition of hexahedral and quadrilateral 
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meshing in the program TrueGrid.  The previous reconstruction protocol included the meshing of 

the wall and ILT as solid meshes In particular, the use of first-order elements in the wall 

(quadrilateral shells) and ILT (8-noded hexahedral elements) has provided a decrease in 

computational time while not sacrificing solution accuracy.  Finally, the current reconstruction 

protocol was streamlined with the automation of data transfer between portions of the 

reconstruction protocol.  For example, the Matlab script ‘idl2dsmith.m’ was created in order to 

automate the transfer of data from the segmentation program (IDL) into the 3D smoothing 

algorithm [106].  A similar result was achieved with the implementation of the script 

‘dsmith2iges.m’.  Finally, the laborious process of creating an ABAQUS input file was also 

streamlined with the Matlab script ‘TruGrid_2_ABAQUS_with_ILT.m’.  The updates 

implemented in the current reconstruction protocol as well as their advantages are listed in Table 

4-1.   
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Table 4-1:  Summary of changes to the AAA reconstruction protocol 

 
Reconstruction 

Method Old Protocol New Protocol Advantage 

Segmentation Manual (Scion Image) Semi-automated (2D 
splines in IDL) 

Smoother 2D dataset 
as well as ↓ in user-

dependence and 
segmentation time 

Meshing 
Wall and ILT (2nd order 

tetrahedral elements, 
meshed in Patran) 

Wall (1st order 
quadrilateral shells, 

TrueGrid) 
ILT (1st order 

hexahedral solid 
elements, meshed in 

TrueGrid) 

↓ computational cost 
for equivalent 

accuracy 

Data transfer 
between protocol 

steps 

Manual data file 
creation/manipulation 

Automated data 
transfer 

Streamlines and 
simplifies 

reconstruction 
protocol 

 

 

4.3 RESULTS AND DISCUSSION 

 

4.3.1 Meshing Results 
 

4.3.1.1 AAA Wall 
 

The mesh independency study resulted in less than a 1% change in stress for a wide range of 

mesh densities (Figure 4-6).  The average stress in the AAA (σave) increased slightly with 

increasing values of f.  A plot of the absolute value of the percent change in σave  versus f shows 

less than 0.2% change in σave for values of f greater than 9 cm-2 (Figure 4-6).  For this reason, 

all AAA walls analyzed in the current work were meshed with a value of f greater than or equal 

to 9 cm-2.  The average number of nodes for all AAA walls (n=35) meshed in the current work 
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was 3267 ±  40 with an average surface area of 182.5 ± 1.5 cm2.  Table 4-2 lists the number of 

nodes, surface area, and mesh density factor f for all AAAs meshed in the current study.   

 

Table 4-2:  Mesh densities for all AAA wall meshes.  ‘N’=non-ruptured; ‘R’=ruptured 

 
AAA AAA Surface Area (cm2) Number of Wall Nodes f (cm-2) 
AAA1 133.3 1936 14.52 
AAA2 242.3 2726 11.25 
AAA3 186.6 2544 13.63 
AAA4 208.1 2014 9.68 
AAA5 157.7 2150 13.64 
AAA6 177.2 4248 23.98 
AAA7 145.2 3200 22.04 
AAA8 255.6 2655 10.39 
AAA9 115.1 2340 20.32 

AAA10 202.9 2538 12.51 
AAA11 134.0 1924 14.35 
AAA12 108.3 2520 23.27 
AAA13 149.3 3328 22.29 
AAA14 171.9 2279 13.26 
AAA15 159.9 2585 16.17 
AAA16 196.2 2805 14.30 
AAA17 172.1 5376 31.24 
AAA18 206.8 2600 12.57 
AAA19 185.3 2736 14.77 
AAA20 217.5 2332 10.72 
AAA21 262.1 3132 11.95 

N1 217.6 2244 10.31 
N2 129.3 6586 50.94 
N3 130.5 2596 19.89 
N4 157.8 5376 34.07 
N5 309.3 7140 23.08 
R1 214.8 2176 10.13 
R2 110.4 2021 18.31 
R3 155.7 3953 25.39 
R4 259.5 3564 13.73 
R5 114.8 6016 52.42 
R6 253.0 4080 16.13 
R7 181.8 1938 10.66 
R8 125.6 4094 32.59 
R9 241.1 4608 19.12 

MEAN 182.5 3267.4 19.2 
SEM 1.5 39.8 0.3 
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The wall mesh for AAA4 is shown in Figure 4-7.  For this AAA, the surface area (208.1 cm2) of 

the AAA was meshed with 1961 first order quadrilateral shell elements (2014 nodes), resulting 

in a mesh density factor of 9.68 cm-2. 
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Figure 4-6:  Percent change in mean AAA wall stress with increasing mesh density 
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Figure 4-7:  Representative mesh for AAA4, f = 9.68 
 

4.3.1.2 Intra-luminal Thrombus 
 

The mesh independency study for the ILT resulted in less than a 1% change in stress for mesh 

densities greater than f=22 cm-3 (Figure 4-8).  In contrast to the mesh independency study 

performed for the AAA wall, σave decreased slightly with increasing values of f.  A plot of the 

absolute value of the percent change in σave  versus f shows less than 0.8% change in σave for 

values of f greater than 20 cm-3 (Figure 4-8).  For this reason, all ILTs analyzed in the current 

work were meshed with a value of f greater than or equal to 22 cm-3. 

The average number of nodes for all ILTs (n=35) meshed in the current work was 8223 ±  

176 with an average volume of 106.6 ± 1.8 cm3.  Table 4-3 lists the number of nodes, volume of 

ILT, and mesh density factor (f) for all ILTs meshed in the current study.   
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Table 4-3:  Mesh densities for all ILT meshes.  NA denotes the AAA had no ILT 

 
AAA Volume of ILT (cm3) Number of ILT Nodes f (cm-3) 
AAA1 45.8 5148 112.40 
AAA2 183.1 5250 28.68 
AAA3 35.0 6324 180.89 
AAA4 17.3 1224 70.79 
AAA5 86.0 4300 50.03 
AAA6 NA NA NA 
AAA7 91.3 6528 71.48 
AAA8 229.5 5104 22.24 
AAA9 104.0 4000 38.48 

AAA10 45.6 1248 27.37 
AAA11 89.7 3276 36.54 
AAA12 54.8 3696 67.40 
AAA13 121.8 4800 39.41 
AAA14 162.5 4884 30.06 
AAA15 94.8 3600 37.97 
AAA16 105.9 4416 41.70 
AAA17 104.3 27470 263.40 
AAA18 171.1 7040 41.15 
AAA19 99.0 7788 78.67 
AAA20 140.2 7920 56.48 
AAA21 64.1 17510 273.17 

N1 170.5 13250 77.71 
N2 NA NA NA 
N3 4.8 9660 2029.41 
N4 48.4 20160 416.36 
N5 209.0 15750 75.36 
R1 148.2 3960 26.72 
R2 219.6 14500 66.03 
R3 89.1 8892 99.81 
R4 26.3 2090 79.47 
R5 34.7 12885 371.75 
R6 129.5 5484 42.35 
R7 190.9 6840 35.83 
R8 NA NA NA 
R9 94.4 18135 192.11 

MEAN 106.6 8222.9 158.8 
SEM 1.8 176.2 10.2 
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The ILT mesh for AAA8 is shown in Figure 4-9.  For this AAA, the ILT volume (208.1 

cm2) was meshed with 3696 first order hexahedral solid elements (5104 nodes), resulting in a 

mesh density factor of 22.24. 
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Figure 4-8:  Percent change in mean ILT stress with increasing mesh density 
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Figure 4-9.  Representative mesh for the ILT of AAA8, f = 22.24 
 
 

.3.2 Visual Inspection of Smoothed 3D Mesh 

or the purposes of qualitatively assuring the accuracy of the reconstruction protocol, the final 

 
 
4
 

F

smoothed AAA wall mesh was plotted for each AAA along with its respective 3D point cloud 

from the segmentation portion of the protocol (the file resulting from Section 4.2.3).  Comparing 

these datasets provides a qualitative check that the 3D smoothing, surface construction, and 

meshing of the AAA wall did not result in any unwanted geometrical modifications.  In other 

words, any geometrical differences present between these datasets should be a direct result of the 

3D smoothing.  A representative comparison plot is shown in Figure 4-10.  The smoothed wall 

mesh for AAA7 displays minimal deviation from the original segmented 3D point cloud, 
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suggesting that the 3D smoothing and mesh creation did not largely alter the ‘true’ geometry 

present in the CT scan. 

 

 

Figure 4-10:  Smoothed AAA7 wall mesh (black) and 3D point cloud resulting from the 
segmentation process (red) 

.3.3 Discussion 
 

 the current work we have extended the reconstruction of AAA from previous work.  

Specifically, we have improved the segmentation process with the implementation of smooth 2D 
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splines instead of the manually tracing previously required [40].  Improvements in the meshing 

algorithm have also resulted in a decrease in the computational time required in solving a 

patient-specific AAA finite element simulation.  While these improvements represent a 

significant effort in the patient-specific reconstruction of AAA, future studies should address 

some of the limitations in the reconstruction process as detailed later in this section. 

 Previous work on the stress analysis of AAA has shown that the inclusion of patient-

specific geometry is mandatory for the correct estimation of AAA wall stress  [28, 33-35, 38, 40, 

e” of the organ or area 

being studied.  After placing the patient in the proper position on the scanning table, the first 

55, 106, 109-111].  Recent work by Wang et al. has shown that the inclusion of the ILT into 

patient-specific finite element simulations of AAA changes both the magnitude and distribution 

of stress within a AAA [40, 55].  For this reason, the ILT was reconstructed in all of AAAs in the 

current study, except when there was no ILT present.  Since the reconstruction process involves 

both patient-specific geometrical modeling as well as the inclusion of the solid ILT, the time 

required to segment the AAA is substantial.  The 2D splines that have been utilized in the current 

work serve in part to address this limitation.  There are, however, several other examples in the 

literature where the reconstruction of soft tissues and organs have been automated with the use of 

other segmentation tools.  For example, the use of “snake” algorithms have been utilized in the 

reconstruction of many organs and tissues within the body [112-118].  These algorithms use 2D 

splines that either grow or shrink in order to wrap themselves around the soft tissue/organ of 

interest.  For a detailed description and review of this and other segmentation tools for the 

segmentation of biological tissues the reader is referred elsewhere [119]. 

 As previously described, a CT scan directs a series of X-ray pulses through the body. 

Each X-ray pulse lasts only a fraction of a second and represents a “slic
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slice is initiated.  Once the X-Ray tube rotates around your body 360 degrees to take one cross-

sectional image, the table will be slightly moved in order to get the next plane.  While the 

patient’s body is being scanned the patient is asked to hold their breath in order that the 

movement of the abdomen during breathing does not add to the error in 3D position of organs 

and tissues.  Since a CT scan does not take an instantaneous snapshot of the entire AAA but 

instead calculates a time-averaged geometry, errors in the 3D position of the AAA arise from 1) 

the blood vessel wall displacement due to the time-varying luminal pressure and 2) any 

differences in 3D position due to the breathing cycle unable to be accounted for by the patient 

holding their breath.  These factors are responsible for the error present in the rough segmented 

3D point cloud shown in Figure 4-10 (in red).  

 There are several other limitations associated with the current reconstruction protocol 

itself.  As can be seen from Figure 4-1, the process of creating a smoothed finite element mesh 

from CT images requires several steps utilizing several different software packages.  While 

cent 

all was not able to be 

re efforts have been successful in making the reconstruction process more streamlined, less 

user-dependent, and more automated, these aspects of the protocol can still be improved.  For 

example, utilizing one program for the segmentation, 2D smoothing, 3D smoothing, and mesh 

creation would significantly simplify the reconstruction protocol since a large effort is currently 

made in transferring data between sequential programs in the protocol.   

 All of the AAA wall reconstructions in the current work were meshed with first order 

quadrilateral shell elements.  Since in a CT scan it is often times impossible to measure the blood 

vessel wall thickness, a 3D distribution of thickness on the AAA w

detected.  Therefore, all of the AAA wall shell elements analyzed in the current work were 

assigned a constant wall thickness of 1.3 mm.  This value was the average thickness of all of the 
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biaxial AAA specimens tested in Section 2.3.3.  Recent work by Raghavan et al. [109] suggests 

that wall thickness may be an important factor in determining an individual aneurysms risk of 

rupture.  The investigation of new imaging techniques for AAA such as magnetic resonance 

imaging (MRI) may provide the detail required to noninvasively predict the 3D distribution of 

wall thickness within a AAA. 

The atherosclerotic nature of AAA formation often results in the calcification of the AAA 

wall.  The reconstruction protocol described here has ignored the presence of any calcified 

plaques.  The calcifications present in the AAA wall may result in a significant change in the 

constitutive properties of this material, resulting in changes in the predicted stress using finite 

element analysis.  In fact, the presence of the calcifications has recently been included in AAAs 

and has been shown to increase the stress on the AAA wall in areas of highly calcified tissue 

[98].  While the presence of calcification has not been included in the present work, the results 

and conclusions regarding the effects of anisotropy on AAA wall stress would be expected to 

hold even with the inclusion of localized plaques. 

 As shown in Figure 4-1, the process of creating an input file for ABAQUS from a set of 

CT scan images requires the use of several software programs, each with its own purpose.  The 

inter- and intra-user variability in using the developed protocol is another source of error present 

in the reconstruction process.  Both of these sources of error are most likely to have the largest 

effect in the first portion of the protocol – the segmentation.  The remaining portions of the 

protocol involve the manipulation of data files via computer programs, which were automated 

and therefore resulted in no intra- or inter-user variability.  The use of the two-dimensional 

control point splines in the segmentation program (written in IDL) is thought to minimize the 

inter- and intra-user variability in the segmentation of the AAA wall and ILT.  The current image 
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segmentation methodology is thought to provide an improvement in repeatability as compared to 

previous methods of segmentation (typically in a software similar to NIH Image), which 

involved pointing and clicking on the desired boundary of interest for the entire 360° 

circumference.  The currently utilized IDL program provided for a repeatable number of data 

points around the circumference of the boundary for each longitudinal slice, which is not 

possible using a point-and-click methd.  For the current work, the amount of inter- and intra-user 

variability was not quantified.  This should be addressed in future work and also kept in mind 

whenever implementing the current methodology in further studies involving the 3D 

reconstruction of AAA.  

 The reconstruction protocol for AAA in the current work has been improved in several 

ways.  The segmentation of the AAA wall and ILT from CT images has been improved with the 

use of two dimensional control point splines.  The computational cost of running a AAA finite 

emenel t simulation has also been decreased with the use of the hexahedral meshing program 

TrueGrid.  The time required to create a smooth finite element mesh from a set of CT images has 

also been accelerated with the use of Matlab scripts designed to ease the transfer of data between 

protocol steps and software programs.  While the current reconstruction protocol represents a 

significant improvement on previous work, there still remain areas where the entire process 

could be made even more automated. 
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5.0 ANISOTROPIC FINITE ELEMENT SIMULATIONS 

 

5.1 INTRODUCTION 

 

Rupture of abdominal aortic aneurysms occurs when the continuous and cyclic pressure acting 

on the lumen of the AAA creates a wall stress which eventually overcomes the ability of the wall 

to withstand those forces (the wall strength).  Thus, the biomechanical point of view of AAA 

rupture states that there are two primary factors influencing AAA rupture – AAA wall stress and 

wall strength.  By taking this point of view, it is easy to recognize that the risk of AAA rupture 

will increase with increasing wall stress as well as decreasing wall strength.  It is not surprising 

then, that the prediction of stress in aneurysms has been reported by several researchers in the 

literature [33, 34, 55, 95, 111, 120-126].  Some of these studies utilize the finite element method, 

which is able to model aneurysms with varying degrees of complexity.  Early finite element 

models of aneurysms in the literature utilized simplistic geometries (e.g., spherical) and small 

deformation constitutive relations [95, 123, 127].  Later work demonstrated that the complex 

shape (e.g., local curvatures) are an important factor in determining the peak stress acting on an 

individual AAA [28, 128].  The isotropic constitutive model developed by Raghavan and Vorp 

represented the first large strain relation for the AAA wall [38].  Several other researchers have 

since utilized this relation when estimating the stresses acting on patient-specific AAA finite 

element simulations [33-35, 55].  One of the more recent advances in the finite element analyses 
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of AAA was the inclusion of the intra-luminal thrombus by Wang et al. [55], whose simulations 

demonstrated that the presence of the ILT can significantly effect both the magnitude and 

distribution of stress within a AAA.  More recently Raghavan et al. investigated the effect of 

variable wall thickness on AAA stresses and demonstrated that this may be a very important 

factor in predicting the rupture risk using finite element analyses [109].  The effect of localized 

calcification on peak AAA wall stress was also investigated recently by Speelman et al. who 

reveal a unique dependence of AAA wall stress on the location and stiffness of mineralized 

plaques in patient-specific AAA simulations [98].    

The present work addresses the assumption of isotropy for the AAA wall.  Nearly all 

biological materials display some amount of anisotropy due to their non-uniform composition 

and structure.  Recent work by Nicosia et al. demonstrated the anisotropy present in the porcine 

ascending aorta [65].   They conclude that the utilization of an isotropic constitutive relation for 

the ascending aorta is insufficient in providing a physiologically realistic prediction of stress.  

Kyriacou and Humphrey also recently underscored the importance of including multiaxial 

constitutive relations into finite element stress analyses of intracranial saccular aneurysms, 

especially given their unique three-dimensional shape [129].  The anterior bulging present in the 

aneurysmal formation of the abdominal aorta also suggests that this region may indeed be in a 

state of multiaxial stress.   

Appropriate stress approximation has been proposed as an important component in AAA 

rupture prediction.  The results in Chapter 3 of this work display the anisotropy present in the 

aneurysmal abdominal aorta in the multiaxial stress state.  In addition, the general strain energy 

(Figures 3-7, 3-10) was also shown to be different for uniaxially versus biaxially tested 

specimens.  The implementation of the anisotropic constitutive relation for the AAA wall and the 
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isotropic biaxially-derived relation for the luminal layer of the ILT may lead to a more 

appropriate estimation of stress within patient-specific AAAs.  This improvement may also be 

important in noninvasively identifying those AAAs which have a high risk of rupture.   

 

5.2 METHODS 

 

5.2.1 Boundary Conditions 
 

The estimation of stress via the finite element method requires three primary inputs.  First, the 

geometry must be adequately discretized into finite elements.  The discretization (meshing) of 

the AAA and ILT is detailed in Section 4.2.6.  Second, appropriate constitutive relations for each 

of the materials in the finite element analysis must be derived.  These relations have been derived 

for both the AAA and ILT in Sections 3.3.3 and 3.3.4, respectively.  Finally, the forces and 

displacements acting at the boundaries of the finite element mesh must also be prescribed.  The 

adequacy and validity of the assumptions utilized in each of these three inputs in the finite 

element method determines the accuracy of the finite element approximated solution.  Once all 

three of the above inputs have been provided, the boundary value problem being considered can 

be solved with the finite element method.  In the finite element method there are two types of 

boundary conditions: essential (sometimes called Dirichlet) boundary conditions and natural 

(sometimes called Neumann) boundary conditions.  Essential boundary conditions prescribe the 

value of the state variable (e.g., displacement) at the boundary nodes.  Natural boundary 

conditions prescribe either the value of flux (e.g., force) or a combination of the values of the 

flux and state variable at the boundary nodes.  As will become apparent, the finite element 

simulation of AAA requires the application of both of these types of boundary conditions.  The 
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following sections describe these boundary conditions in detail as well as detailing other 

assumptions made in the finite element analysis of patient-specific AAAs. 

 

 

5.2.1.1 Blood Pressure 
 

An increase in the blood pressure acting on the interior of a AAA would obviously cause an 

increase in the stress acting on the AAA wall.  It is therefore not surprising that hypertension has 

been identified as a major risk factor for AAA rupture [130].  Since the interest here is to 

noninvasively predict the risk of rupture for patient-specific AAAs under normal physiologic 

conditions, the blood pressure occurring in the patients’ medical charts was not utilized as a 

natural boundary condition in the finite element analyses of AAA in this work.  This was 

avoided for several reasons.  First, it may be that a patient’s blood pressure measured in a 

hospital setting does not accurately represent his or her daily blood pressure.  Secondly, a AAA 

patient that has been admitted into a hospital for coexisting conditions will more often than not 

have their blood pressure pharmacologically controlled.  Lastly, the inability to suitably represent 

a AAA patient’s blood pressure due to its fluctuation over time was thought to add unwanted 

variability to the current work.  Because we were interested in predicting the changes in AAA 

wall stress as a result of such variables as the diameter, curvature, tortuosity, amount and 

presence of ILT and not the highly variable value of a patient’s blood pressure, each of the AAA 

simulations in the current work were performed with the application of a systolic 120 mmHg.  

This pressure was applied to either the luminal contour of the ILT or to the AAA wall when the 

ILT was not present.   
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5.2.1.2 Longitudinal Tethering 
 

The abdominal aorta is in a unique and complex physical environment, especially in the presence 

of an aneurysm.  Several studies have investigated the longitudinal stretch present in blood 

vessels and shown them to be under a state of longitudinal tethering in-vivo [66, 131-133].  For 

the current work, the nodes comprising the proximal and distal ends of each AAA were 

constrained in all three displacement degrees of freedom.  This was done to mimic the in-vivo 

longitudinal tethering thought to be present in the abdominal aorta.  It was found in the current 

study that constraining the radial displacement of nodes on the ends of the AAA did not result in 

localized stress concentrations, but did result in faster convergence of the finite element solution.  

The boundary conditions utilized here have also been used by several other researchers in the 

patient-specific finite element simulation of AAA [28, 33-35, 40, 55, 109].  The effects of the 

spine and the pressure due to other organs present in the abdominal aorta were neglected in this 

study.  Future work should include the forces put on the abdominal aortic wall by these 

surrounding structures. 

5.2.1.3 Reference Configuration 
 

Arteries are known to be in a state of residual stress in-vivo.  Fung quantified the amount of 

residual stress in the canine aorta and its relation to location along the aortic tree [66].  Several 

other researchers have investigated the presence and effects of residual stresses in arteries [134-

138].  The presence of residual stresses requires the definition of three states of stress for blood 

vessels: the unstressed state, the unloaded state, and the loaded state.  The unstressed state refers 
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to the configuration of the aorta in which there are no residual stresses.  Often times this state is 

attained with a radial cut of a ring of aortic tissue resulting in the relief of residual stresses and 

the ‘opening’ of the ring.  The unloaded state is the configuration of the blood vessel in which 

there exists no longitudinal force or luminal pressure acting on the aorta.  This state is not stress 

free due to the presence of residual stresses.  Finally, the loaded state represents the deformed 

configuration of the blood vessel caused by both longitudinal tethering and luminal pressure in. 

For the purposes of the finite element simulation of AAA, the systolic pressure should be 

applied to the unloaded state with longitudinally tethering force already present.  For the current 

work, the longitudinal tethering of the aorta was mimicked with the constraint of the distal and 

proximal ends.  Since the geometry in a CT scan represents a time-averaged loaded state 

configuration (see Section 4.2.1), the geometry of a AAA in the completely unloaded state was 

not available.  Therefore the systolic pressure was applied to the loaded state configuration in the 

current work.  The error associated with using the loaded configuration as the unloaded state has 

been investigated previously by Wang et al. [40].  Their results indicate the maximum error in 

peak stress within an AAA is 8% (from 17.96 to 19.52 N/cm2) when utilizing a loaded 

configuration instead of an unloaded one.  A similar error would be expected herein since for the 

current work the loaded ‘CT’ geometry was also treated as the unloaded geometry for which the 

systolic 120 mmHg was applied.  Once again, this increase in stress would most likely not 

change the results of the current work regarding the differences in stress due to the presence of 

anisotropy. 
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5.2.1.4 Shear Stresses 
 

Predicting the stresses acting on the AAA wall is the primary reason for simulating patient-

specific AAAs.  The stresses present in the wall due to the luminal pressure, however, are not the 

only stresses present.  The time-varying flow of blood past the luminal surface of the AAA also 

creates a state of shear stress on the endothelial layer of the wall.  Recent studies have indicated 

that the maximum shear stress acting on the luminal layer of a AAA due to pulsatile flow is on 

the order of 3 Pa [139-143].  Since the peak value of this shear stress is an order of magnitude 

lower than that reported for solid finite element simulations, the effect of shear on the state of 

stress within the AAA wall was neglected in the current study. 

 

5.2.2 Implementation of the Anisotropic Constitutive Relation into ABAQUS 
 

As stated in Section 5.2.1, one of the inputs into a finite element simulation is the constitutive 

model.  Simply stated, a constitutive model relates the stresses and strains within a deformable 

body.  There are several different types of constitutive models, and each subclass is typically 

classified according to the assumptions used in its derivation.  Some tissues in the body such as 

bone can be modeled as linear elastic homogenous isotropic (LEHI) materials, in which the small 

deformation of the material allows a linear relation between stress and strain.  For soft tissues, 

however, the deformations are typically large (>1% strain) and therefore require a finite-strain 

constitutive model.  In fact, the circumferential strain of a AAA due to the pressure pulse alone 

(~40 mmHg) has been reported to be greater than 2% [72].  Despite the increases in stress 

resulting from the inhomogeneities known to be present in AAAs due to localized calcification 

[98], many researchers assume a homogenous mechanical response for the AAA wall [33-35, 38, 
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55].  The AAA wall will be assumed to act as a nonlinearly elastic homogenous material for the 

simulations in the present work.  The anisotropic constitutive relation derived in the current work 

(Section 3.3.3) was implemented into the commercially available finite element code ABAQUS 

as detailed in the following sections.   

 

5.2.2.1 Solving a Nonlinear Problem Using Newton’s Method 
 

There are several sources of nonlinearity in a boundary value problem including geometrical 

nonlinearity, material nonlinearity, and boundary nonlinearity.  In the pressurization of a AAA 

there exists material and geometrical nonlinearities.  For this reason the solution to the finite 

element analysis cannot be performed in one large step as is the case in a linear analysis.  

Instead, the solution is found by specifying the loading as a function of time and incrementing 

time to obtain the nonlinear response.  Therefore, the simulation is broken up into a number of 

time increments and an approximate equilibrium configuration is found at the end of each time 

increment.  Within each time increment, Newton’s method uses multiple iterations to find the 

equilibrium solution in an increment [144].  

 For a body to be in equilibrium, the net force acting at every node must be zero.  

Therefore, the basic statement of equilibrium is that the external loads acting on a body, P, and 

the internal forces, I, must balance one another, P – I = 0.  Figure 5-1 displays the nonlinear 

response of a structure to a small load increment, ∆P.  ABAQUS uses the tangent stiffness, Ko, 

which is based on its configuration at time u0, and ∆P to calculate a displacement correction, ca, 

for the structure.  The structures configuration is then updated to ua using ca.  The structures 

internal forces Ia are then compared to the total applied load P using the force residual defined as 
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Ra = P – Ia.  If Ra is zero at every degree of freedom within a model, point a in Figure 5-1 

would lie on the load-displacement curve and the structure would be in perfect equilibrium.  For 

a nonlinear problem Ra will never be perfectly zero so it is compared to a tolerance value, below 

which ABAQUS accepts the configuration as an equilibrium configuration.  If the tolerance 

value is not met, then ABAQUS forms a new stiffness, Ka, based on the updated configuration 

ua.  The new stiffness along with the residual Ra determine a new displacement configuration cb, 

which lies closer to the systems equilibrium state.  A new force residual can then be calculated as 

Rb = P – Ib.  This iteration process is repeated within each increment of Newton’s method until 

the force residual meets the force residual tolerance value, after which the system is assumed to 

be in equilibrium [144]. 
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Figure 5-1:  Pictorial view of Newton’s method for solving nonlinear problems 
 

 

Newton’s method works well for load displacement curves that are convex as is the case 

in Figure 5-1.  Such convex load-displacement curves would be the situation for isotropic 

polymeric materials such as rubber.  For concave load displacement curves, however, the 

Newton’s method has problems in predicting reasonable values for the displacement corrections 

ca, cb, etc.  This is especially true in the case where the load displacement curve is nearly 

horizontal with the displacement axis.  The low stress and strain region of the constitutive model 

for the AAA wall described in Section 3.3.3 would create a load-displacement curve that is 
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nearly horizontal to the displacement axis.  This situation creates a stiffness Ki and a 

corresponding displacement correction ci+1 that attempt a displacement iteration that is far 

outside any reasonable equilibrium deformation state.  This problem is exacerbated by the 

extremely sharp increase in stress present in the anisotropic constitutive relation (Section 3.3.3), 

which creates a rather thin range of reasonable displacement configurations for large changes in 

load (see gray box in Figure 5-2).  In preliminary studies using the UMAT for the anisotropic 

relation for AAA wall, it was found that the above issue resulted in simulations which were 

either unable to complete the initial increment, or required so small of an initial increment (0.01 

% of final load) that the solution of the analysis became cumbersome and computationally 

inefficient.  In order to circumvent this problem, an initial increase in slope was implemented 

into the UMAT so that at low strains the simulation easily found an intermediate equilibrium 

state (Figure 5-3).  The strain energy was augmented in the following way 
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where u11 = u22 = u12 = 40.  Note that equation (5.1) does not represent an attempt at improving 

the constitutive model derived in Section 3.3.3, but is simply a tool used to jump start and 

accelerate the convergence of the finite element simulation.  Implementing this computational 

tool allowed each simulation to start with a reasonable initial incremental step (~5% of final 

load) and correspondingly resulted in a decreased CPU time when running the anisotropic AAA 

finite element simulations.  As one can see from Figure 5-3, there is minimal error (< 1.5 %) in 

the large stress-strain region when utilizing this computational tool, since at extremely low 

strains the ui terms dominate but at higher strains the exponential terms on the right side of 

equation (5.1) control the strain energy. 
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Figure 5-2:  Problems associated with low initial slopes when using Newton’s method 
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Figure 5-3:  A) Differences in stress with the implementation of equation 5.1.  B) Blown up 
view of A) 
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5.2.2.2 User-Defined Material Properties 
 

The anisotropic constitutive relation detailed in Section 3.3.3 was implemented into the finite 

element software with the use of the user defined material function (UMAT) available in 

ABAQUS.  The purpose of the Fortran UMAT subroutine within the ABAQUS solver is 

primarily two-fold.  First the function must determine the stresses using both the constitutive 

relation and the incremental displacements (arguments in the subroutine).  Secondly, the function 

must also calculate and output the material Jacobian matrix (∂∆σ/∂∆ε) which will aide in the 

calculation of the new incremental displacement used in the next increment.  The location and 

purpose of the UMAT subroutine within an ABAQUS increment is summarized in Figure 5-4.   

Start of Increment

Start of Iteration

Calculate ∆ε

UMAT implemented 
in Abaqus, Inc 
(Hibbitt, Karlsson, 
and Sorenson) using 
Fortran user 
Subroutine

Calculate integration point field 
variables from nodal values

Calculate ∂∆σ/∂∆ε

Define Loads ∂P/∂x

Start of IncrementStart of Increment

Start of IterationStart of Iteration

Calculate ∆ε

UMAT implemented 
in Abaqus, Inc 
(Hibbitt, Karlsson, 
and Sorenson) using 
Fortran user 
Subroutine

Calculate integration point field 
variables from nodal values

Calculate ∂∆σ/∂∆ε

Define Loads ∂P/∂x

 

Figure 5-4:  Outline of the purpose of UMAT subroutine within ABAQUS 
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An Excerpt from the UMAT subroutine is shown below.   

… 

C    CALCULATE THE STRAIN 

C 

 E11=0.5*(DFGRD1(1, 1)**2+DFGRD1(2, 1)**2-1) 

 E22=0.5*(DFGRD1(1, 2)**2+DFGRD1(2, 2)**2-1) 

 E12=0.5*(DFGRD1(1, 1)*DFGRD1(1, 2)+DFGRD1(2, 2)*DFGRD1(2, 1)) 

 E21=0.5*(DFGRD1(1, 2)*DFGRD1(1, 1)+DFGRD1(2, 2)*DFGRD1(2, 1)) 

 E33=ZERO 

…. 

C    CALCULATE THE STRESS 

C 

 S11= 2*u11*E11 +C*(b1*E11*EXP(0.5*b1*E11**2)+A3*E22*EXP(b3*E11*E22)) 

 S22= 2*u22*E22 +C*(b2*E22*EXP(0.5*b2*E22**2)+A3*E11*EXP(b3*E11*E22)) 

 S12= 2*u12*E12 + C*(b4*E12*EXP(0.5*b4*E12**2)) 

 S33= ZERO 

… 

C    CALCULATE THE STIFFNESS MATRIX 

C 

 DDSDDE(1,1)= 2*F1*S11+F1*F1*J1+K1*S12+F1*K1*J8+K1*S12+F1*K1*J8+K1*K1*J7 

 DDSDDE(2,2)= K2*K2*J4+K2*S12+F2*K2*J9+K2*S12+F2*K2*J9+2*F2*S22+F2*F2*J2 

 DDSDDE(3,3)= F1*S11+F1*K2*J5+F1*F2*J3+2*K1*S12+K1*K2*J3+F2*S22+K1*F2*J6 

 DDSDDE(1, 2)= F1*F1*J4+F1*K1*J9+K1*F1*J9+K1*K1*J2 

 DDSDDE(1,3)= F1*F1*J5+F1*S12+K1*F1*J3+F1*S12+K1*F1*J3+2*K1*S22+K1*K1*J6 

 DDSDDE(2,3)= 2*K2*S11+K2*K2*J5+F2*S12+K2*F2*J3+F2*S12+K2*F2*J3+F2*F2*J6 

 DDSDDE(2, 1)= DDSDDE(1, 2) 

 DDSDDE(3, 1)= K2*S11+F1*K2*J1+F2*S12+F1*F2*J8+K1*K2*J8+K1*F2*J7 

 DDSDDE(3, 2)= F1*K2*J4+F1*S12+F1*F2*J9+K1*K2*J9+K1*S22+K1*F2*J2 

… 

 

The entire UMAT subroutine is also shown in Appendix G.  Note here that the stress S33 

is defined as zero.  This is done simply due to our choice of elements for the AAA wall.  The 

AAA wall was meshed with first order reduced-integration quadrilateral shell elements (S4R), 

for which the stress in the direction orthogonal to the plane of the shell is zero. 
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5.2.2.3 Definition of Local Material Coordinates 
 

The material coordinates of a given shell element will determine the direction to which S11, S22, 

E11, and E22 act.  By default, ABAQUS assigns the local 1 direction as the projection of the 

global X axis onto the surface of the shell.  For a AAA, this would not result in an adequate 

definition of local material coordinates, since the local longitudinal direction of an element on 

the AAA wall changes with the centerline of the AAA.  As a first trial, the entire AAA was 

positioned in 3D space such that the open ends of the AAA point in the positive and negative 

global X-directions.  In this case the projection of the global X-axis onto each element resulted in 

an adequate definition of the local longitudinal direction for those AAAs displaying a large 

amount of symmetry about the X-Y plane.  For the majority of AAAs, however, the presence of 

the ILT and the tortuous path of blood flow within an AAA results in a nonsymmetrical 

geometry.  The 3D path of the centerline of AAAs is in general a more reliable indication of the 

local longitudinal direction of the AAA wall.  For this reason, each AAA wall mesh was divided 

up into several (e.g., 40) longitudinal z-sections, and the center of each slice was found (Figure 

5-5).  3D spline tools were then utilized in Matlab to create a spline through the centerline points 

along the AAA (Figure 5-5).  The projection of this 3D spline onto the surface of each AAA 

wall element was then used to define the local longitudinal direction of the shell.  The normal 

direction of the shell is automatically defined in ABAQUS using the ordering of nodes within an 

element.  Once the local longitudinal and normal directions of the shell element are defined, the 

final local circumferential direction of the shell is computed using the right hand rule.  The above 

formulation provided an accurate, repeatable and mesh-independent definition of the local 

material directions (Figure 5-6).   
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Figure 5-5:  Longitudinal center points and resulting 3D spline used to define local material 
coordinates 
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Figure 5-6:  A representative AAA showing the definition of local material coordinates 
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 Implementing this information into the ABAQUS input file required the creation of a 

coordinate system for each longitudinal z-section of the AAA wall with the *ORIENTATION 

command as well as the referencing of this coordinates system in the *Shell Section command 

for the elements comprising that longitudinal z-section of the wall.  An excerpt of one of these 

longitudinal z-sections is shown below. 

… 

*Shell Section, elset=wall1, material=wall, orientation=cylcoord1 

0.130000, 5 

… 

*Orientation, name=cylcoord1, definition=coordinates, system=cylindrical 

 18.860296, 16.828611, -1.633000, 18.925944, 17.154957, -1.930759 

 1, 0 

…. 

The isolation of an element set comprising a given longitudinal z-section, the creation of a 

coordinate system for that longitudinal z-section, as well as the assignment of this coordinate 

system to the appropriate element set was all created in the input file created by the Matlab 

scripts TruGrid_2_ABAQUS_with_ILT.m and TruGrid_2_ABAQUS_without_ILT.m 

(Appendix E). 

 

5.2.3 Biaxial Simulations 
 

In order to test the accuracy of the UMAT subroutine, the equibiaxial protocol several AAA wall 

biaxial tensile tests were simulated.  The computational results of the anisotropic simulations 
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were compared with the biaxial experimental data as well as simulations utilizing the isotropic 

constitutive relation 

                     ( ) ( )233 −+−= BB II βαW                                            (5.2) 
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which has previously been used in the literature to model the AAA wall [38].  Patient specific 

data from a uniaxial tested specimen were fit to equations (5.2) and (5.3), which gave the 

parameters for the patient specific isotropic, or PT ISO, simulation.  Constitutive model 

parameters for the average isotropic, or AVE ISO, simulation were previously derived by fitting 

data from 69 uniaxial tested specimens to equations (5.2) and (5.3) [29]. 

A subset of AAA wall biaxial specimen (n=14) were constructed in ABAQUS CAE 

using their respective dimensions from the experimental biaxial test.  A Matlab (v. 6.5) code was 

written to select nodes along the four outer edges of the specimen (Appendix H).  Each node 

was assigned a force boundary condition so that the specimen experienced 120 N/m tension per 

side.  Patient specific data from one biaxially tested specimen were fit to the constitutive model 

developed in Section 3.3.3 which yielded parameters for the patient specific anisotropic, or PT 

ANI, simulation.  The constitutive model parameters derived for the average data set in Section 

3.3.3 were used for the average anisotropic, or AVE ANI, simulations.  It should be noted that 

the uniaxial and biaxial specimens used to derive the constitutive relations used in the PT ANI 

and PT ISO simulations were taken from the same location within the same AAA patient. 

The stress-strain relationships for the biaxial experiments were compared to the 

computational results of the PT ISO and PT ANI simulations.  The strain at 60kPa for the biaxial 
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data was compared with the strain at 60kPa for both the isotropic and anisotropic simulations 

(Figure 5-7).   The modulus at ~3% strain was calculated by  

                                  
12

12

εε −
−

=
ttm                                                              (5.4) 

where t1 and t2 are the Cauchy stresses occurring 5 data points above and below 3% strain, 

respectively and ε1 and ε2 are the strains occurring 5 data points above and below 3% strain, 

respectively (Figure 5-7).  All statistical comparisons were performed using a one-way ANOVA 

(Sigma Stat, v. 3.0) with a significance of p < 0.05. 
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Figure 5-7:  Definition of the strain and modulus used in comparing biaxial simulations 
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5.2.4 Cylindrical Simulation 
 

As a first step to three dimensional simulations, the anisotropic constitutive model for the AAA 

wall developed in Section 3.3.3 was used in the simulation of a pressurized cylinder.  For this 

simulation, a 9 cm long cylinder of 3.0 cm diameter and 2 mm thickness was pressurized to 120 

mmHg, with each end of the cylinder being constrained in all degrees of freedom.  The analytical 

solution for the hoop stress due to the pressurization of a thick walled cylinder (thickness/radius 

= 0.13 >0.05) takes the form 
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where σθ(r) is the hoop stress as a function of the radial coordinate (r), Pi is the internal pressure 

(120 mmHg), Po is the external pressure (0 mmHg), a is the internal radius (1.4 cm), and b is the 

external radius (1.6 cm).  The hoop stress at the luminal, mid-wall, and adventitial integration 

points of the shell element were compared to the analytical solution for the pressurization of a 

thick-walled cylinder.   

 

5.2.5 Anisotropic AAA Finite Element Simulations 
 

There were 35 AAAs simulated in the current work which were broken up into three groups: 

elective repairs (n=21, AAA1 – AAA21), non-ruptured repairs (n=5, N1 – N5), and ruptured 

repairs (n=9, R1 – R9). Elective repair simulations were derived from CT scans from AAA 

patients who underwent scheduled elective open repair of their AAA.  Non-ruptured simulations 

consisted of AAA simulations for which their existed a set of CT scans at least 1 year apart, with 

the latter scan providing evidence the AAA remained quiescent.  For these simulations, the 

images from the earlier CT scan were used to reconstruct the AAAs.  Ruptured repair 
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simulations were derived from CT scans taking place no more than one year prior to AAA 

rupture. 

The electively repaired AAAs (n=21) were utilized to investigate the differences in stress 

due to the implementation of the anisotropic constitutive relation for the AAA wall (Section 

3.3.3) and biaxially-derived isotropic constitutive relation for the ILT (Section 3.3.4).  For this 

purpose, the input file automatically created by the Matlab script described in Section 4.2.7 was 

modified using several different combinations of constitutive models for the AAA wall and ILT.  

AAA simulations including the anisotropic relation for the AAA wall and isotropic relation for 

the ILT were denoted as ANI ISO.  Simulations which used the anisotropic relation for the AAA 

wall (Section 3.3.3) and the biaxially-derived model for luminal layer of the ILT (Section 3.3.4) 

were denoted ANI ANI.  For these simulations, the medial and abluminal regions of the ILT 

were modeled using the isotropic constitutive relation derived for these layers previously [59]. 

Simulations utilizing the previously developed isotropic constitutive relations for the AAA wall 

[38] and ILT [59] were labeled ISO ISO.  Finally, the influence of anisotropy in the absence of 

the ILT was investigated with simulations utilizing the anisotropic (ANI NOILT) and isotropic 

(ISO NOILT) relations for the AAA wall with no ILT present.  It is important to note that for 

each of the electively repaired AAA, the only difference present between these simulations is the 

changes in mechanical behavior of the AAA wall and ILT.  For each individual simulation, the 

peak stress and strain within the AAA was recorded and compared across groups.  In addition, 

the mean stresses acting on each AAA were also recorded and compared.   

The ruptured and non-ruptured AAAs (n=9, n=5, respectively) were used to investigate 

whether or not the peak and average stresses within a AAA are different between these two 

groups.  The presence of a statistically larger stress for the ruptured group would indicate that 
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stress may be an important factor in determining a given AAAs risk of rupture.  The fact that the 

non-ruptured AAAs remained quiescent for an entire year would suggest this group of AAAs 

may have a decreased stresses acting on the AAA wall.  Of course, since rupture is mechanically 

dependent on stress and strength, the lack of a statistical difference between these groups may be 

due to large differences in the strength of each of these AAAs.  For all of the ruptured (R1-R9) 

and non-ruptured AAAs (N1-N5), the peak and mean stresses and strains acting on the AAA 

wall were recorded and compared. 

    

5.2.6 Stress Concentration Quantification 
 

In addition to the average and peak stresses acting on a given AAA, the concentration of stress 

was also quantified and compared for both the anisotropic vs. isotropic simulations as well as the 

ruptured vs. electively repaired AAAs.  The AAA stress distribution was quantified with the use 

of another Matlab function (Appendix I) which calculated the maximum stress gradient within a 

given spherical region of interest.  More specifically, a given AAA was traversed one node at a 

time calculating the gradients between the node of interest and all other nodes within a 

prescribed spherical distance (Figure 5-8).  The maximum value of this gradient was chosen for 

each node of interest so that a value of stress distribution was calculated for each node on the 

entire AAA wall mesh.  The magnitude of the peak stress gradient (which node had the highest 

stress gradient) located remotely from the models edges was compared to its experimental 

counterpart (e.g., maximum stress gradient for AAA1 ANI ISO versus AAA1 ISO ISO).  These 

quantities were also compared in the ruptured versus non-ruptured groups. 
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Figure 5-8:  Determination of stress gradients within a spherical region of interest (large 
red sphere) around a finite element node (small blue sphere) 

 
 
 
 
 

5.3 RESULTS AND DISCUSSION 

 

5.3.1 Biaxial Simulations 
 

Plots of the experimental and computational Cauchy stress versus stretch ratio for a 

representative biaxial specimen are shown in Figure 5-9.  Note the stiffer response for the PT 

ISO as compared to the PT ANI simulation.  Note also that the similarity between the PT ANI  

computational data and the experimental biaxial data.  Since both of the constitutive relations 

utilized in the PT ANI and PT ISO simulations were derived from tissue from the same location 
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and AAA patient, this plot displays the differences in stress prediction resulting from constitutive 

relations derived from uniaxial and biaxial testing.  The biaxial data and average anisotropic 

simulations yielded significantly greater strain values compared to the average isotropic 

simulations at a given stress of 60kPa (Figure 5-10).  At a given strain of ~3%, the moduli of the 

average isotropic simulations were significantly greater than those of the biaxial data and 

average anisotropic simulations (Figure 5-11).   
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Figure 5-9:  Circumferential (A) and longitudinal (B) Cauchy stress versus stretch ratio for 
the PT ISO and PT ANI simulations and the corresponding biaxial experimental data 

 
 
 

141 



 

Strain at t=60kPa

0.00

0.02

0.04

0.06

0.08

0.10

Theta Direction L Direction

S
tra

in

BIAXIAL DATA AVE ANI AVE ISO

%

%,+

+

#

#,X

Xall comparisons p < 0.05

 
 

Figure 5-10:  The strain values at t = 60 kPa for 14 biaxial simulations 
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Figure 5-11:  The moduli at a strain of 3% for 14 biaxial simulations 
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5.3.2 Cylindrical Simulation 
 

The results of the cylindrical simulation utilizing the anisotropic UMAT and the analytical 

stresses using equation (5.5) are summarized in Table 5-1.  The percent error in the hoop stress 

at the luminal (r=1.4cm), mid-wall (r=1.5cm), and adventitial (1.6cm) integration points were 

0.41%, 1.96%, and 5.30%, respectively.  The hoop stress distribution for the finite element 

solution is shown in Figure 5-12. 

 

Table 5-1:  Hoop stress for the analytical and computational solution of the pressurization 
of a thick walled cylinder 

 
 Stress (N/cm2) 

r = 1.4 cm r = 1.5 cm r = 1.6 cm  

Analytical 12.05 11.17 10.45 

Computational 12.00 10.95 9.90 

% Error 0.41 1.96 5.30 
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Figure 5-12:  Maximum principal stress distribution for the computational solution of the 
cylindrical simulation 

 

 

5.3.3 Anisotropic Versus Isotropic AAA Simulations 
 

The peak maximum principal stresses for each of the electively repaired simulations are shown 

in Table 5-2.  In this table the different columns represent the different combinations of 

constitutive relations utilized for the AAA wall and ILT as described in Section 5.2.5.  Note that 
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AAA6 and AAA14 did not have any ILT, so only the ANI NOILT and ISO NOILT simulations 

were run for these AAAs.  As detailed in this table, the mean peak stresses for the electively 

repaired simulations were 38.30 ± 3.04, 36.06 ± 2.73, 38.83 ± 3.31, 54.70 ± 2.44, and 51.27 ± 

2.09 N/cm2 for the ANI ISO, ISO ISO, ANI ANI, ANI NOILT, and ISO NOILT simulations, 

respectively.  Using a paired t-test, there were significant differences between the ANI ISO and 

ISO ISO average peak stresses (p<0.001) as well as between the ANI NOILT and ISO NOILT 

peak stresses (p=0.014).  Using a Wilcoxon Signed Rank test, there were no statistically 

differences between the average peak stresses of the ANI ISO and ANI ANI simulations.  

Whether the anisotropic or isotropic relation was used for the AAA wall, the peak stresses were 

statistically larger for simulations neglecting the presence of the ILT (p<0.001 for ANI ISO vs 

ANI NOILT and ISO ISO vs ISO NOILT).  In general, the presence of the anisotropic 

constitutive relation elevated the peak stress within a given AAA.  It is interesting to note, 

however, that this was not true for all of the electively repaired AAA simulations as 3 out of the 

21 simulations had an elevated peak stress for simulations utilizing the isotropic relation for the 

AAA wall (AAA9, AAA13, and AAA16).  This was even more pronounced in the absence of the 

ILT, as 5 out of the 21 isotropic simulations had higher peak stresses than their anisotropic 

counterparts (AAA2, AAA8. AAA12, AAA14, and AAA18).  The maximum principal stress 

distribution for a representative electively repaired AAA is shown in Figure 5-13. 

.   
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Table 5-2:  Peak maximum principal stresses for the electively repaired AAA simulations.  
ANI ISO = anisotropic AAA wall + isotropic ILT; ISO ISO = isotropic AAA wall + 
isotropic ILT; ANI ANI = anisotropic AAA wall + biaxiall derived luminal ILT; ANI 
NOILT = equivalent to ANI ISO excluding presence of ILT; ISO NOILT = equivalent to 
ISO ISO excluding presence of ILT 

 
 Peak Stress (N/cm2) 

Simulation ANI ISO ISO ISO ANI ANI ANI NOILT ISO NOILT 
AAA1 39.64 37.86 39.76 49.80 44.77 
AAA2 36.35 35.00 36.18 49.92 53.70 
AAA3 58.83 50.42 59.19 58.76 51.94 
AAA4 68.26 65.91 68.19 69.30 66.48 
AAA5 37.56 34.94 37.73 50.44 46.08 
AAA6    68.70 54.68 
AAA7 32.08 31.22 32.46 49.54 48.34 
AAA8 37.72 36.43 37.81 73.50 76.37 
AAA9 14.51 16.10 14.08 43.74 38.01 

AAA10 66.10 60.81 75.65 82.96 63.83 
AAA11 42.59 39.20 42.79 55.46 51.68 
AAA12 33.10 29.63 32.83 39.38 44.56 
AAA13 19.07 19.68 19.14 59.61 50.59 
AAA14    51.03 51.50 
AAA15 39.27 35.99 39.39 49.00 45.97 
AAA16 40.80 41.39 40.68 55.35 51.11 
AAA17 41.07 37.73 40.97 51.35 47.85 
AAA18 28.76 27.62 28.63 58.73 63.67 
AAA19 35.89 32.95 35.96 47.10 45.64 
AAA20 22.78 21.56 22.76 39.30 36.84 
AAA21 33.39 30.78 33.51 45.68 43.07 
MEAN 38.30 36.06 38.83 54.70 51.27 
SEM 3.04 2.73 3.31 2.44 2.09 
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Figure 5-13:  Maximum principal stress distributions for AAA17. ANI ISO = anisotropic 
AAA wall + isotropic ILT; ISO ISO = isotropic AAA wall + isotropic ILT; ANI ANI = 

anisotropic AAA wall + biaxiall derived luminal ILT; ANI NOILT = equivalent to ANI ISO 
excluding presence of ILT; ISO NOILT = equivalent to ISO ISO excluding presence of ILT 

 

The mean maximum principal stresses for each of the electively repaired simulations are 

shown in Table 5-3.  Again, the different columns in this table represent the different 

combinations of constitutive relations utilized for the AAA wall and ILT.  As detailed in this 

table, the mean maximum principal stresses for the electively repaired simulations were 16.50 ± 

1.88, 17.67 ± 1.82, 15.53 ± 1.7, 30.29 ± 0.72, and 29.83 ± 0.73 N/cm2 for the ANI ISO, ISO ISO, 

ANI ANI, ANI NOILT, and ISO NOILT simulations, respectively.  Using a paired t-test, there 

were significant differences between the ANI ISO and ISO ISO mean maximum principal 
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stresses (p<0.001) as well as between the ANI NOILT and ISO NOILT mean maximum 

principal stresses (p<0.001).  Using a Wilcoxon Signed Rank test, there was a statistical 

difference between the mean maximum principal stresses of the ANI ISO and ANI ANI 

simulations (p<0.001).  Unlike the average peak stresses, the presence of the anisotropic 

constitutive relation generally reduced the mean maximum principal stress within a AAA that 

has ILT.  When there was no ILT present, however, the mean maximum principal stresses were 

elevated in the anisotropic simulations.  Again, these conclusions were not universal as there 

were simulations not following this trend.   

 

Table 5-3:  Mean maximum principal stresses for the electively repaired AAA simulations 
 

Simulation Mean Stress (N/cm2) 
 ANI ISO ISO ISO ANI ANI ANI NOILT ISO NOILT 

AAA1 19.30 20.76 19.96 28.93 28.33 
AAA2 12.72 15.31 13.35 35.38 35.17 
AAA3 23.46 23.84 23.71 26.09 25.92 
AAA4 33.72 33.45 33.96 35.40 34.86 
AAA5 16.59 17.28 16.97 29.04 28.38 
AAA6    29.80 29.37 
AAA7 11.32 12.02 11.68 24.28 24.24 
AAA8 10.01 11.45 10.44 35.96 35.62 
AAA9 3.05 3.97 3.15 27.51 26.59 

AAA10 28.61 32.53 31.73 34.94 34.96 
AAA11 12.41 14.24 13.36 33.18 32.17 
AAA12 13.54 14.80 14.03 28.16 27.10 
AAA13 7.20 8.93 7.66 30.45 29.85 
AAA14    32.37 32.19 
AAA15 15.35 16.46 15.90 30.79 29.80 
AAA16 16.00 17.42 16.51 29.06 29.06 
AAA17 15.00 16.02 15.45 30.35 30.26 
AAA18 7.30 8.42 7.53 31.88 31.64 
AAA19 12.94 14.10 13.15 27.31 27.02 
AAA20 7.84 9.43 8.18 26.90 26.42 
AAA21 17.93 19.14 18.39 28.28 27.60 
MEAN 14.96 16.29 15.53 30.29 29.83 
SEM 1.63 1.64 1.70 0.72 0.73 
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In addition to the peak and mean maximum principal stress acting within a given AAA, the 

peak and mean maximum principal strain was also quantified for each electively repaired AAA.  

The peak maximum principal strains in the ANI ISO simulations were statistically larger than for 

the ISO ISO simulations (0.139 ± 0.005 vs. 0.127 ± 0.005, p = 0.012).  There was also a slight 

increase in the peak maximum principal strains when comparing ANI ISO to ANI ANI 

simulations (0.139 ± 0.005 vs. 0.142 ± 0.005, p = 0.012).  There was no significant change in the 

peak maximum strain when neglecting the presence of the ILT (ANI NOILT vs. ISO NOILT, 

0.142 ± 0.005 vs. 0.150 ± 0.003, p = 0.152).  The peak maximum principal strains for all of the 

electively repaired AAAs are shown in Table 5-4. 

The mean maximum principal strains in the ANI ISO simulations were also statistically 

larger than for the ISO ISO simulations (0.074 ± 0.004 vs. 0.069 ± 0.004, p = 0.001).  There was 

a slight decrease in the mean maximum principal strains when comparing ANI ISO to ANI ANI 

simulations (0.074 ± 0.004 vs. 0.076 ± 0.004, p < 0.001).  There was no significant change in the 

mean maximum strain when neglecting the presence of the ILT (ANI NOILT vs. ISO NOILT, 

0.100 ± 0.001 vs. 0.101 ± 0.001, p = 0.538).  The peak maximum principal strains for all of the 

electively repaired AAAs are shown in Table 5-5.  The maximum principal strain distribution 

for a representative electively repaired AAA is shown in Figure 5-14. 
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Table 5-4:  Peak maximum principal strain for the electively repaired AAA simulations 

 

 Peak Maximum Principal Strain 

Simulation ANI ISO ISO ISO ANI ANI ANI NOILT ISO NOILT 
AAA1 0.190 0.139 0.190 0.135 0.145 
AAA2 0.174 0.130 0.176 0.177 0.147 
AAA3 0.157 0.154 0.156 0.142 0.156 
AAA4 0.150 0.166 0.150 0.158 0.166 
AAA5 0.146 0.128 0.147 0.152 0.143 
AAA6    0.208 0.154 
AAA7 0.133 0.121 0.132 0.112 0.147 
AAA8 0.159 0.139 0.159 0.136 0.180 
AAA9 0.088 0.087 0.087 0.114 0.129 

AAA10 0.148 0.163 0.150 0.146 0.166 
AAA11 0.124 0.143 0.123 0.130 0.157 
AAA12 0.120 0.116 0.120 0.131 0.144 
AAA13 0.111 0.092 0.113 0.135 0.149 
AAA14    0.159 0.154 
AAA15 0.142 0.116 0.143 0.129 0.142 
AAA16 0.134 0.137 0.135 0.131 0.150 
AAA17 0.136 0.125 0.137 0.129 0.144 
AAA18 0.145 0.118 0.146 0.170 0.166 
AAA19 0.136 0.125 0.136 0.125 0.147 
AAA20 0.114 0.101 0.115 0.124 0.123 
AAA21 0.140 0.120 0.140 0.149 0.131 
MEAN 0.139 0.127 0.140 0.142 0.150 
SEM 0.005 0.005 0.005 0.005 0.003 
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Table 5-5:  Mean maximum principal strain for the electively repaired AAA simulations 

 

 Mean Maximum Principal Strain 
Simulation ANI ISO ISO ISO ANI ANI ANI NOILT ISO NOILT 

AAA1 0.099 0.084 0.101 0.099 0.100 
AAA2 0.078 0.068 0.081 0.106 0.112 
AAA3 0.099 0.095 0.099 0.099 0.096 
AAA4 0.102 0.104 0.102 0.103 0.106 
AAA5 0.079 0.075 0.081 0.101 0.098 
AAA6    0.112 0.103 
AAA7 0.066 0.066 0.068 0.086 0.091 
AAA8 0.057 0.052 0.060 0.102 0.108 
AAA9 0.028 0.025 0.029 0.095 0.094 

AAA10 0.097 0.107 0.099 0.101 0.108 
AAA11 0.072 0.066 0.076 0.101 0.104 
AAA12 0.076 0.068 0.078 0.097 0.096 
AAA13 0.054 0.047 0.057 0.102 0.100 
AAA14    0.103 0.106 
AAA15 0.078 0.071 0.081 0.101 0.099 
AAA16 0.079 0.075 0.081 0.096 0.097 
AAA17 0.075 0.067 0.078 0.098 0.100 
AAA18 0.048 0.044 0.050 0.106 0.106 
AAA19 0.071 0.066 0.072 0.098 0.096 
AAA20 0.054 0.048 0.056 0.097 0.096 
AAA21 0.088 0.082 0.089 0.101 0.099 
MEAN 0.074 0.069 0.076 0.100 0.101 
SEM 0.004 0.004 0.004 0.001 0.001 
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Figure 5-14:  Maximum principal strain distributions for AAA17 
 
 
 
 
 

The peak gradients of the maximum principal stress for each of the electively repaired 

simulations are shown in Table 5-6.  As detailed in this table, the mean maximum principal 

stresses for the electively repaired simulations were 27.06 ± 2.04, 23.15 ± 2.02, 27.52 ± 2.16, 

32.44 ± 1.39, and 23.60 ± 1.36 N/cm3 for the ANI ISO, ISO ISO, ANI ANI, ANI NOILT, and 

ISO NOILT simulations, respectively.  Using a paired t-test, there was a significant increase in 

the peak stress gradient for the ANI ISO versus ISO ISO simulations (p=0.01) as well as for the 

ANI NOILT versus ISO NOILT simulations (p<0.001).  Using a Wilcoxon Signed Rank test, 

there was no statistical difference between the peak stress gradients of the ANI ISO versus ANI 
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ANI simulations (p=0.113).  The utilization of the anisotropic constitutive relation for the AAA 

wall resulted in an increase in peak wall stress gradient, with these differences being amplified in 

simulations neglecting the presence of the ILT.    The maximum principal stress gradient 

distribution for a representative electively repaired AAA is shown in Figure 5-15. 

 

Table 5-6:  Peak maximum principal stress gradient for the electively repaired AAA 
simulations 

 
 Peak Stress Gradients 
  ANI ISO ISO ISO ANI ANI ANI NOILT ISO NOILT 

S1 34.87 26.24 34.54 34.04 27.94 
S2 32.68 28.10 32.51 34.57 24.41 
S3 46.84 28.23 47.67 41.16 26.51 
S4 30.30 18.60 30.40 28.45 18.75 
S5 25.40 23.60 25.53 27.67 23.85 
S6    32.25 26.47 
S7 24.33 20.99 24.25 31.67 24.71 
S8 28.88 23.99 28.79 38.23 26.96 
S9 8.04 8.80 7.97 24.49 13.87 
S10 36.84 38.17 43.02 44.96 27.91 
S11 26.29 17.08 27.00 35.08 23.17 
S12 28.58 18.96 29.12 37.56 22.44 
S13 10.86 11.31 10.59 30.48 23.68 
S14    37.97 19.69 
S15 19.48 19.23 19.50 24.72 19.80 
S16 29.91 31.10 30.48 28.43 25.97 
S17 19.67 16.11 20.12 26.30 16.72 
S18 23.67 22.11 23.64 26.37 24.58 
S20 40.63 48.89 40.60 44.18 44.12 
S21 22.58 17.39 22.80 26.76 16.65 
S25 24.22 21.03 24.38 25.91 17.45 

MEAN 27.06 23.15 27.52 32.44 23.60 
SEM 2.04 2.02 2.16 1.39 1.36 
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Figure 5-15:  Maximum principal stress gradient distribution for AAA17 

 

 

5.3.4 Ruptured Versus Electively-Repaired AAA Simulations 
 

The peak maximum principal stresses for each of the non-ruptured and ruptured simulations are 

shown in Table 5-7 and Table 5-8, respectively.  The ruptured simulations are from patients 

whose AAA ruptured, while the non-ruptured simulations are derived from CT scans from 

patients whose AAA remained quiescent for at least 1 year.  In this dataset, there were two 

AAAs which did not have any ILT (N2 and R2).  As detailed in this table, the mean peak stresses 

for the non-ruptured and ruptured AAAs were 45.98 ± 4.26 and 49.89 4.02 N/cm , respectively 

(p = 0.55) .  There was no significant difference between the mean stresses for the non-ruptured 

2
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and ruptured AAAs (20.39 ± 1.66 vs. 20.65 ± 2.61, p = 0.95).  There were also no statistical 

differences in the peak and mean maximum principal strains between each of the groups (0.143 ± 

0.008 vs. 0.161 ± 0.009, p = 0.20 and 0.088 ± 0.005 vs. 0.085 ± 0.007, p = 0.75, respectively).  

Maximum principal stress and strain distributions for a pair of representative AAAs are shown in 

Figures 5-16 and 5-17, respectively.     

 

Table 5-7:  Peak and mean maximum principal stresses and strains for the non-ruptured 
AAA simulations 

 
 Non Ruptured 

2) Mean Stress (N/cm ) 2Simulation Peak Stress (N/cm Peak Strain Mean Strain 
N1 53.02 15.83 0.129 0.075 
N2 41.40 23.67 0.156 0.099 
N3 58.93 24.04 0.144 0.097 
N4 36.49 21.13 0.166 0.093 
N5 40.06 17.28 0.121 0.078 

MEAN 45.98 20.39 0.143 0.088 
SEM 4.26 1.66 0.008 0.005 

 

Table 5-8:  Peak and mean maximum principal stresses and strains for the ruptured AAA 
simulations 

 

 Ruptured 
2) Mean Stress (N/cm2) Simulation Peak Stress (N/cm Peak Strain Mean Strain 

R1 33.50 7.42 0.124 0.049 
31.76 0.189 0.123 
24.87 0.158 0.078 
18.17 0.195 0.085 
22.46 0.164 0.090 

54.47 
63.99 
53.72 
55.05 

R2 
R3 
R4 
R5 
R6 44.40 16.65 0.169 0.085 
R7 67.30 31.05 0.186 0.105 
R8 42.25 18.84 0.137 0.073 
R9 34.32 14.57 0.130 0.078 

MEAN 49.89 20.65 0.161 0.085 
SEM 4.02 2.61 0.009 0.007 
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Figure 5-16:  Maximum principal stress distributions for N5 and R7 
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Figure 5-17:  Maximum principal strain distributions for N5 and R7 
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The peak gradients of the maximum principal stress for each of the non-ruptured and 

ruptured AAAs are shown in Table 5-9.  As detailed in this table, the mean peak stress gradients 

for the non-ruptured and ruptured AAAs were 20.77 ± 3.74 and 30.96 ± 3.10 N/cm3, respectively 

(p = 0.049).  Maximum principal stress gradient distributions for representative ruptured and 

non-ruptured AAAs are shown in Figure 5-18. 

     

Table 5-9:  Peak maximum principal stress gradients for the non-ruptured and ruptured 
AAA simulations ( * p = 0.049) 

 

 Peak Stress Gradients (N/cm3) 
Simulation Non Ruptured Simulation Ruptured 

N1 27.86 R1 17.43 
N2 19.13 R2 40.30 
N3 29.23 R3 38.79 
N4 8.40 R4 27.27 
N5 19.20 R5 31.03 

  R6 27.91 
  R7 27.07 
  R8 26.97 
  R9 31.17 

MEAN 20.77*  30.96* 
SEM 3.74  3.10 
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Figure 5-18.  Maximum principal stress gradient distributions for N5 and R7 
 

 

5.3.5 Discussion 
 

An anisotropic constitutive relation was successfully implemented into the commercially 

available finite element package ABAQUS.  The user-defined FORTRAN subroutine (UMAT) 

was tested and validated using biaxial tensile simulations and a simulation of the pressurization 

of a 3D cylinder.  The user-defined anisotropic relation was then applied to patient-specific AAA 

simulations.  The results for maximum principal stress, strain, and stress gradient for the 

anisotropic simulations were compared to simulations utilizing a previously derived isotropic 

constitutive relation (n=21, AAA1-AAA21).  These results suggest that the peak wall stress is, in 
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general, significantly increased when using the anisotropic constitutive relation.  This was not 

the case for all simulations, as for some simulations the isotropic relation resulted in a higher 

peak stress.  The presence of the biaxially-derived constitutive relation for the luminal ILT did 

not largely alter the stresses acting on the AAA wall.  The utilization of the anisotropic 

constitutive relation for the AAA wall resulted in an increase in peak wall stress gradient, with 

these differences being amplified in simulations neglecting the presence of the ILT.  When 

comparing the ruptured to non-ruptured AAAs, there were no significant differences between the 

peak stress, mean stress, peak strain, and mean strain.  The peak stress gradient, however, was 

significantly increased in the ruptured group of AAAs.   

 AAA simulations using axisymmetric hypothetical geometries have previously been 

created and analyzed in the literature [95, 123, 127, 128, 145, 146].  Such analyses fail to take 

into account the unique and patient-specific geometry known to be present in AAAs [107, 110, 

147].  Several studies have since investigated the stresses acting on realistic patient-specific 

AAAs reconstructed from noninvasive imaging techniques [28, 33-35, 55, 94].  These studies 

revealed that the mechanical stress acting on the AAA wall cannot be estimated using simplistic 

hypothetical geometries or other crude analyses such as the Law of LaPlace.  Raghavan et al. 

were the first to estimate the stresses acting on patient-specific AAAs using a geometry derived 

from CT scan images.  Wang et al. improved upon this reconstruction technique with the 

inclusion of the ILT into the patient-specific modeling of AAAs [55].  The reconstruction 

technique utilized herein is an updated version of this reconstruction protocol, with decreases in 

reconstruction time and user to user variability as well as improvements in computational 

efficiency via a more automated reconstruction protocol.   
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 The estimation of stress using the finite element method requires the identification of an 

accurate constitutive relation for the AAA wall and ILT.  Early finite element simulations of 

AAA assumed the wall and ILT to act as linear isotropic materials, such that these materials 

could be modeled with the definition of a Young’s modulus and Poisson’s ratio [95, 111, 123, 

127, 145, 146].  Such engineering analyses are appropriate for materials undergoing small strains 

(e.g., steel), while for materials undergoing large strains a more rigorous finite strain constitutive 

model must be derived.  The AAA wall has been shown to undergo large strains in-vivo [72, 

148], rendering significant error in the application of a small strain relation into finite element 

analyses of AAA.  Raghavan et al. were the first to develop a large strain constitutive relation for 

the AAA wall [38], while Wang et al. did the same for the ILT [59].  The constitutive relations 

for both of these investigations can easily be implemented into most commercially available 

finite element packages.  However, both of these relations are also isotropic relations derived 

from the uniaxial tensile testing of excised aneurysm contents.   

A recent investigation has shown that the aneurysmal wall displays an anisotropic 

mechanical response [57] (Sections 2.3.3 and 3.3.3).  The implementation of this anisotropic 

constitutive relation (Section 5.3.3) results in a significant increase in peak stress in most AAAs 

(Table 5-2, Figure 5-13).  The use of an anisotropic relation did not, however, result in an 

increased peak stress level for all AAAs, suggesting that the effect of anisotropy on the peak 

stress within a given AAA is patient-specific.  The differences in the stress distributions within a 

given AAA were also more amplified in cases where the ILT is neglected (Figures 5-13, 14, 15).  

It is interesting to note that the presence of an anisotropic relation for the AAA wall resulted in 

larger strains in the presence of ILT, while the anisotropic simulations had lower peak strains 

when neglecting the presence of the ILT (Figure 5-14).  This figure also shows that in addition 
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to the magnitude of peak strain, the location of peak strain may also be different with the 

implementation of an anisotropic constitutive relation.  This result was not true, however, for all 

AAA simulations.  This result further confirms the idea that the stresses and strains within an 

individual AAA are largely a function of the locally varying geometrical parameters such as ILT 

thickness and local curvature.   

 The effect of the intra-luminal thrombus on the stresses acting on finite element 

simulations of AAA has been investigated previously [55, 93, 95, 149].  Mower et al. showed 

that the presence of the ILT can reduce the stresses acting on an AAA up to 51% [95].  Wang et 

al. were the first to implement a large strain constitutive relation into patient specific AAA 

simulations.  Their results agree with Mower et al., showing the ILT acts as a stress cushion and 

can reduce wall stress up to 38% [55].  In contrast, work by Thubrikar et al. has shown that the 

pressures acting at the AAA wall are 91% of those in the lumen [149].  Similar findings were 

recently reported by Takagi et al [150].  Results reported here corroborate the work done by 

Mower et al. and Wang el al., in that the presence of the ILT (ANI ISO vs. ANI NOILT and ISO 

ISO vs. ISO NOILT) significantly decreased the peak stress acting on the AAA wall.  It was also 

interesting to note that the inclusion of the biaxially-derived constitutive relation for the luminal 

layer of the ILT did not largely alter the stresses and strains within the AAA wall (Tables 5-2, 4, 

and 5; Figures 5-13, 14).  This is similar to results reported by Di Martino et al. who showed that 

the variation of mechanical properties of the ILT within physiological limits results in a variation 

of AAA wall stresses of only 5% [93].   

 When comparing the ruptured versus non-ruptured AAA simulations, it was found there 

was no significant difference in the peak stress, strain between these two groups.    Figure 5-19 

shows the mean peak stress acting on all ruptured and non-ruptured AAAs for simulations 
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utilizing both of the anisotropic and isotropic constitutive relations for the AAA wall.  The 

previously derived isotropic constitutive model for the ILT was used in all of these simulations 

[59].  While both constitutive relations showed a trend towards increased peak stress in the 

ruptured group, neither group reached significance.  The smaller decease in the p-value for the 

anisotropic comparison may be evidence for an improvement in stress prediction for this relation.  

These results are in contrast to work done by Fillinger et al., who showed a significant increase 

peak wall stress for ruptured and symptomatic AAAs compared to non-symptomatic AAAs who 

were electively repaired [33].  In their simulations the ILT was neglected, which may have 

provided for the differences not found in the current study. 
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Figure 5-19:  Comparison of anisotropic and isotropic simulations for ruptured and non-
ruptured groups 
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 Some of the limitations in the current work result from the assumptions applied in 

deriving a noninvasive estimation of AAA wall stress.  One of these assumptions is that the 

material properties for all AAA patients can be modeled using one constitutive relation.  This 

assumption stems from the inability to noninvasively derive a constitutive relation on a patient 

specific basis.  While such a relation would be ideal, the error arising from using a population-

wide anisotropic constitutive model can be assessed by analyzing the stresses on AAA 

simulations in which the upper and lower 95% confidence interval constitutive models (see 

Section 3.3.3, Table 3-8) are utilized.  Using a representative AAA, the error in peak wall stress 

was found to be 2.4% for the upper and 1.8% for the lower 95% confidence interval.  These 

results are similar to results reported previously in which the upper and lower 95% confidence 

interval variations in isotropic AAA wall constitutive parameters resulted in less than 4% change 

in peak wall stress [38].  The same type of analysis was performed by Di Martino et al. on the 

ILT which resulted in a maximum variation of 10% on the AAA wall stress due to large yet 

physically reasonable variations in mean ILT model parameters.  These results suggest that the 

peak stress acting on an individual AAA are relatively insensitive to the errors introduced using a 

set of mean or population-wide model parameters. 

 Another limitation of the current work is the assumption that the CT configuration (ΩCT) 

from which the AAA models are derived is the “stress free” configuration (ΩO).  This 

assumption may lead to significant error in wall stress estimation as the state of stress within a 

blood vessel has previously been shown to be in a state of stress even in the unloaded 

configuration (due to residual stresses/strains) [66, 134, 135, 137].  There currently exists no 

experimental information on the residual stresses and strains present in the aneurysmal 

abdominal aorta.  Such information would provide for a better understanding of the location on 
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the stress-strain curve the AAA acts in-vivo.  In order to quantify the error associated with using 

the CT geometry as the “stress free” configuration (ΩCT=ΩO) the following analysis was 

performed.  An asymmetrical hypothetical AAA was used to mimic the stress free configuration 

(ΩO, upper left of Figure 5-20).  This AAA was pressurized to 100 mmHg in ABAQUS, from 

which the deformed geometry was extracted and assumed to correspond to the configuration of 

the AAA during a CT scan (ΩCT, upper right of Figure 5-20).  A 120 mmHg was then applied to 

this deformed geometry to mimic the boundary conditions utilized in the current work (ΩO=ΩCT, 

lower right of Figure 5-20).  Of course, the “true stress” acting on the AAA can be modeled with 

the the pressurization (0 to 120 mmHg) of the zero stress state configuration.  Comparing the 

nodal stresses between the “true stress” simulations and the simulation assuming ΩCT=ΩO 

revealed a maximum and mean difference in stress of 1.0% and 0.7%, respectively (Figure 5-

20).  All of the above simulations were run with the anisotropic constitutive relation derived and 

implemented in the current work.  The results reported here are in contrast to a similar 

investigation reported previously in our laboratory for the isotropic constitutive relation which 

showed a maximum error in peak stress of 8% (range 2% to 10%) [40].  Recent work by Marra 

et al. estimated the zero-stress state geometry of a patient-specific AAA using dynamic magnetic 

resonance imaging [151].  Their results indicate an error of 8.2% in peak wall stress when 

comparing the pressurization of the zero-pressure geometry to the diastolic dynamic magnetic 

resonance geometry pressurized to the systolic blood pressure [151].  While the results reported 

above indicate the assumption of ΩCT=ΩO seems to introduce little error in the stress estimation 

of a hypothetical AAA, the effect of this assumption on stress estimations of patient-specific 

AAA requires further investigation. 
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Figure 5-20:  Differences in stress values using the assumption that the CT configuration is 
the zero stress configuration 

 

Other limitations for the current finite element simulations include the assumptions used 

along the boundaries of the AAA.  AAA are in a unique physical environment in-vivo, as they 

are bounded in the posterior by the spine and held in place by surrounding tissues and the 

tethering due to branching vessels.  Once again, the lack of experimental data on the forces 

experienced by the AAA due to these physical boundary conditions precludes its inclusion in the 

finite element simulations investigated here.   
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 Another key limitation in the present work stems from the constitutive modeling of the 

ILT.  Herein we assume the ILT to act as a purely solid continuous material.  The ILT, however, 

is known to be primarily composed of water [152].  The fluid phase present in the ILT may be 

important in not only the transmission of pressure and stress, but may also be important in 

governing the oxygen and nutrient transport to the AAA wall.  To this end, Vorp et al. has 

previously shown with hypothetically shaped computational simulations that the presence of the 

ILT limits the transport of oxygen to the AAA wall [153].  Further work in this area should be 

aimed at how the fluid phase in the ILT (and its different layers [154]) effects the stresses acting 

on the AAA wall as well as how the fluid and nutrient flow within the ILT changes on a patient-

specific basis. 

  On average, the presence of an anisotropic constitutive relation in patient-specific finite 

element simulations of AAA increased the peak stress acting on most AAAs.  The lack of a 

consistent increase in peak stress in anisotropic vs. isotropic AAA simulations suggests that its 

effect may be patient-specific.  While peak stress in simulations using both relations was not 

found to be a significant predictor of AAA rupture, the anisotropic relation utilized here may 

provide a better estimate of stress as evidenced by the larger difference in peak stress when 

comparing ruptured to non ruptured AAAs.  The anisotropy present in the AAA wall (Section 

3.3.3) was successfully implemented into patient-specific finite element simulations of AAA.  

The presence of a multiaxial stress-state for the AAA wall in-vivo suggests that this 

implementation provides a more accurate state of stress for the AAA wall.    
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6.0  NONINVASIVE ESTIMATION OF AAA WALL STRENGTH 

 

 

6.1 INTRODUCTION 

  

From a biomechanical point of view, AAA rupture occurs when the stress in a region of the 

aneurysm wall exceeds the local strength of the tissue. It is therefore believed that a patient-

specific biomechanics-based approach that utilizes estimates of both wall stress and wall strength 

distributions would provide the most reliable assessment of the propensity for rupture of a 

particular AAA.  

As described in earlier, several researchers propose the use of finite element analysis for 

the noninvasive prediction of patient-specific AAA wall stress distribution [28, 32, 34, 35, 55, 

92, 93, 95, 111, 123, 146].  The peak stress acting on a AAA was recently utilized to demonstrate 

that peak wall stresses for ruptured AAA are significantly higher than electively repaired 

aneurysms, even when controlled for size. [35, 155]  This study suggested that using peak wall 

stress to assess AAA rupture risk is an improvement over using AAA diameter.  However, since 

local wall stress is only one of the two factors dictating mechanical failure of the AAA wall, the 

most accurate estimation of the rupture potential of individual AAA requires that the wall 

strength distribution be taken into account as well.  That is, a certain value of peak wall stress 
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may cause rupture for one AAA but not for another depending on that individual AAA’s wall 

strength distribution.  

Despite this, AAA wall strength distribution has not been given the same amount of 

investigative attention as the wall stress distribution. Vorp et al. first documented the failure 

strength of AAA wall as measured by ex vivo tensile testing of freshly obtained AAA samples. 

[32]  Subsequent work has shown that AAA wall strength differs from location to location within 

a given aneurysm, and is generally weaker in regions of increased thickness of adjacent 

intraluminal thrombus (ILT). [31]  However, for the purpose of clinically assessing rupture 

potential of AAA, a noninvasive means to calculate in vivo wall strength distribution is 

necessary. There is currently no technique available in the literature to accomplish this. 

The goal is therefore to develop and validate a noninvasive method to evaluate AAA wall 

strength distribution in vivo.  To accomplish this, statistical methods will be used to construct a 

model relating the local strength of the AAA wall to certain carefully chosen noninvasively 

measurable variables.  

 

 

6.2  SUMMARY OF SHORTCOMINGS OF PREVIOUS APPROACH 

 

Previous work performed by David H. J. Wang was aimed at developing a method for 

noninvasively predicting AAA wall strength [40].  The work described herein utilizes similar 

techniques to that used previously, with several notable improvements.  First, the method used 

previously used to measure locally varying predictors of AAA wall strength (e.g., local ILT 

thickness, local AAA diameter) was user-dependent and possibly biased.  This method involved 
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the isolation of a small rectangular piece of AAA wall with the entire thickness of ILT attached.  

This wedge of ILT and wall was taken to the laboratory bench top and used in the measurement 

of the local value of ILT thickness.  The remaining ILT (that remaining after the wedge of ILT 

and wall was removed) was also required in order to determine local values for transverse 

diameter (Figure 6-1).   

 

 

Figure 6-1:  Schematic of AAA wall sample preparation and local parameter measurement 

using the pervious method. A wedge-shaped sample of ILT was cut and removed with a 

piece of wall attached (A). Then the whole thrombus was removed from the aneurysm as is 

routine in open surgical repair. The wedge-shaped ILT was put back in the whole 

thrombus and sliced longitudinally, as shown in (B). The local ILT thickness and local 

diameter was then measured on the cross-section. A slice of circumferentially-oriented wall 

specimen was harvested from the wedge-shaped sample edge (C).  Taken from [40]. 
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This technique may have been biased as to the type of ILT isolated from electively repaired 

AAAs since it stands to reason that any ILT which was not highly structured (of liquid 

consistency) would not be able to be isolated as a wedge attached to the AAA wall.  In addition, 

this method for measuring ILT thickness and local diameter does not easily translate into the 

clinical arena, since imaging modalities such as CT scan are typically used to measure such 

variables as transverse diameter.  Given these limitations to the earlier approach, a new method 

which uses CT scan images to measure locally varying values of ILT thickness and local 

diameter was developed.  This method is described in detail later in this chapter. 

Secondly, the prior method used to calculate the thickness of an individual uniaxial 

tensile testing specimen was also thought to be suspect.  In earlier tests, the value of thickness 

was measured physically with a contacting digital caliper.  Since this method is not non-

contacting, it most likely compressed the tissue and resulted in an artificially small value of true 

AAA wall thickness.  This resulted in a statistical model predicting wall strength above the range 

of AAA wall strength reported in the literature previously.  For the specimens tested since the 

prior work, a laser micrometer was used as a non-contacting method for measuring the thickness 

of AAA uniaxial tensile testing specimens.  A equation was also developed in order to convert 

the earlier measured values of wall thickness to more those measured via the laser micrometer.  

This process is also described in detail later in this chapter.   

Thirdly, and probably the most concerning of all of the limitations of the earlier approach 

was the assumption of independence between uniaxial specimens.  While the earlier 

methodology checked for (and provided evidence for) independence using appropriate statistical 

techniques, this assumption would not be expected to hold given a large enough dataset.  Simply 

stated, in linear regression each sample used in the derivation of the statistical model should be 
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completely independent and uncorrelated with every other sample.  The fact that there were 

some AAA patients used in the model construction for which there was more than one uniaxially 

derived value of strength suggests that this assumption is inappropriate, even if appropriate 

statistical checks suggest otherwise.  In order to correct for the inherent autocorrelation in the 

data used in the model construction, the method of linear mixed-effects modeling was utilized.  

This method is still linear regression and therefore must meet all of its assumptions except for the 

autocorrelation, or independence assumption. 

Fourthly, the previous method used in defining the variable NORD was the local 

transverse diameter divided by the maximum transverse diameter.  The variable NORD was 

included in the model as a measure of the longitudinally varying value of transverse diameter.  

Its normalization allows the comparison of this variable across AAA patients.  Normalizing the 

local transverse diameter by its maximum value within a AAA results in a variable whose 

maximum is 1.  Since the variable NORD was meant to be a measure of the extent of dilation 

within a AAA, using a value of non-dilated diameter to normalize the local transverse diameter 

provides a more appropriate of measure of dilation since its upper limit is in theory not bounded.  

Therefore, the variable NORD in the current work was defined as the local value of transverse 

diameter normalized to a value of non-dilated aortic diameter based on the patient’s age and sex.   

Finally, the statistical model for AAA wall strength was further improved by increasing 

the number of specimen’s used in the model construction.  In the prior methodology, the entire 

dataset was divided into two groups – one for model construction and one for model validation.  

Here, we combine these two datasets and add additional data for the construction of the statistical 

model, thereby increasing the power of the statistical regression analysis.  Table 6-1 summarizes 

all of the improvements made to the statistical model derived previously. 
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Table 6-1:  Improvements in model used to noninvasively estimate AAA wall strength 

 
 Old New 

ILT thickness and local 

diameter measurement 
Bench top  CT scan 

NORD Definition Local / maximum diameter 
Local / nonaneurysmal 

diameter 

Autocorrelation assumption Yes No 

N (construction) 34 specimens (11 patients) 81 specimens (39 patients) 

Tensile testing thickness Caliper Laser micrometer 

 

 

6.3 METHODS 

 

 

6.3.1 Initial Selection of Variables Predicting AAA Wall Strength 
 

In order to develop a noninvasive estimate of AAA wall strength we will use a statistical 

approach.  Linear regression techniques will be used to relate local values of wall strength to 

other noninvasively measurable predictor variables (sometimes called covariates).  The lack of 

attention given to variables directly influencing AAA wall strength in the literature requires we 

utilize a different approach to identify potential predictors to be used in the regression analysis.   

We will introduce several variables that have been associated with AAA enlargement and 
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rupture in the literature and include these as initial predictors of AAA wall strength.  Backwards 

step-wise linear regression will then be used to identify those variables that are required to 

predict AAA wall strength.  All statistical analyses were carried out in the statistical program 

NCSS 2004, except the mixed-effects regression which was carried out in the statistical package 

R, v. 1.9.1.  The following sections describe the rationale for choosing this subset of potential 

predictor variables. 

6.3.1.1 Smoking 
 

A recent retrospective study by Lindblad et al. found that men who smoked, among other factors, 

were at significantly higher risk for developing large AAAs [156].  Wanheinen  et al. also 

provided evidence that current smoking affects the later development of AAA [157].  Other 

ultrasound screening surveys and case-control studies have demonstrated a strong association 

between cigarette smoking and AAA [158, 159].  Smoking has also been associated with rapid 

AAA enlargement and rupture [160, 161], as it was reported that there is a 5-fold increase in 

AAA rupture risk for cigarette smokers versus non-smokers [161].  While the strength of the 

association and the presence of a dose response suggest a causal relation between smoking and 

AAA development, specific mechanisms are unclear [162].  One possible mechanism is the 

continued absorption of chemicals from smoking may have effects on the proteolytic and 

fibrinolytic activities of the AAA wall, and also on smooth muscle cell metabolism [160], each 

of which could have a direct affect on AAA wall strength.   

Cohen et al. investigated the effect of cigarette exposure on rabbit aortic elastase activity.  

Their results showed an increase in elastase activity in rabbits exposed to cigarette smoke 

compared to control animals [163].  Cannon et al. studied the correlation between smoking and 
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the amount of circulating serum proteolytic activity and found this to be increased in patients 

with AAA.  Nordskog et al. also studied the effects of cigarette smoke condensate on cultured 

human aortic endothelial cells and found there to be increase expression of genes involved in the 

release of extracellular matrix degradation proteases (MMP-1, MMP-8, MMP-9) [164].  Since 

several researchers have suggested that the development and rupture of AAA is associated with a 

disruption in the balance of collagen and elastin turnover [53, 165-167], these studies provide 

evidence that smoking may be an important factor in the development of AAA.  For these 

reasons smoking (SMK) was included as a possible covariate in the construction of the statistical 

wall strength model.   

6.3.1.2 Family History 
 

Familial tendency of AAA has been demonstrated by several investigators, including our 

laboratory [168, 169].  In a large case-control study by Darling et al. [170], 15 percent of AAA 

patients reported an AAA in at least one first degree relative as compared with 1.8 percent of 

controls (odds ratio = 9.7). Other studies have reported similar findings [168, 171, 172].  To our 

knowledge, no studies exist that examine the influence of family history on AAA wall 

microstructure or biomechanical properties. However, because of the strong familial tendencies 

in AAA disease, we chose to include family history (HIST) as a potential predictor of AAA wall 

strength.  
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6.3.1.3 Gender 
 

Although the frequency of AAA among men is between two to four times higher than among 

women in the same age group [173, 174], epidemiologic studies have shown a higher risk of 

rupture of AAA in women than in men. [173, 174]  A recent study by Wilson et al. showed that 

women have a shorter time to AAA rupture from initial diagnosis compared with men [175].  

Solberg et al. recently investigated the association of gender with the growth rate of AAAs and 

found a significant increase in the growth rate of AAAs in women than in men [176].  These 

differences may be a result of the estrogen mediated reduction in macrophage (MMP-9) 

production found in women [177].  These studies, as well as preliminary data from our 

laboratory [178], suggest that there may be a difference in AAA wall integrity between males 

and females.  In addition, other work in our laboratory has shown a trend towards a decrease in 

strength for specimens taken from women versus men undergoing elective repair of their AAA 

(Figure 6-2).  These results suggest possible gender differences in AAA development and 

rupture.  For this reason, gender was included as a potential covariate in the construction of the 

statistical wall strength model.  
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Figure 6-2:  Mean wall strength values for men (n=24) versus women (n=10) 

 

6.3.1.4 Age 
 

In healthy arteries, the synthesis and degradation of collagen and elastin are carefully regulated 

by a balance between the activation and inhibition of proteases and their antagonists [179].  In 

the process of aging, this balance is temporally destroyed through the induction of matrix 

metalloproteinase gene expression or the secretion of enzymes by inflammatory cells. [179]  This 

imbalance may in fact be responsible for the large changes observed in the biaxial mechanical 

behavior of the abdominal aorta as a function of age (Section 2.3.1) [56].  It is also known that 

the prevalence of AAA increases with increasing age [173, 174].  Since the development and 

progression of aneurysmal disease is thought to be concomitant with decreases in extracellular 

matrix strength, this observation suggests that the aorta as a whole may become weaker with 

advancing age [162].  The changes in the extracellular matrix as a function of age has been 
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quantified previously in the literature [179-181].  These studies show that the amount of collagen 

present in the aorta increases with age, while the amount of elastin decreases with age.  These 

changes may be a result of the recent report of increases in MMP-2 activity in the aging aorta 

[182] (Figure 6-3).  The age of a AAA patient was therefore considered important in predicting 

the strength and therefore included as a potential covariate in the statistical wall strength model.   

 

Figure 6-3:  Correlation between age (in years) and aortic matrix metalloproteinase-2 

(MMP-2) activity. Taken from McNulty et al. [182] 

 
 

6.3.1.5 Intraluminal Thrombus Thickness 
 

The intima and subintimal media in the infrarenal aorta are not nourished by the vasa vasorum, 

but instead by luminal blood flow [183].  Computational and experimental studies by Vorp et al. 
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have shown data supporting the hypothesis that the ILT commonly found in AAA serves as a 

barrier to the oxygen supply from the lumen, possibly causing hypoxia of the aortic wall. [31, 

153]    Kazi et al. also reported that aneurysm wall covered with ILT displayed more frequent 

signs of inflammation, apoptosis, and degraded extracellular matrix than AAA wall in which 

there was no ILT [184].  A more recent report by this group showed the differences in protease 

expression between thrombus-free and thrombus covered wall [185].   Work in our laboratory 

has also shown a strong inverse correlation between the ILT thickness and adjacent wall strength 

within the same AAA [135] (Figure 6-4).  Given these previous studies showing the alterations 

in the mechanical integrity of ILT-covered aneurysmal wall, the local ILT thickness was taken as 

a potential predictor of AAA wall strength. 

 

Figure 6-4:  Comparison of tensile strength for group I versus group II specimens. Significant difference was 

noted by means of the paired t test.  Taken from Vorp et al. [31] 
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6.3.1.6 Maximum and Local Transverse Diameter 
 

As a AAA develops and enlarges, medial lamellar units are destroyed, and the main structural 

proteins responsible for providing structural integrity to the aorta (namely elastin and collagen) 

are degraded. [88, 186]  Our laboratory has shown that there is also a significant decrease in the 

tensile strength of the AAA compared to nonaneurysmal tissue [30].  This observation along 

with evidence that larger AAAs have a higher risk of rupture [187, 188] might also suggest that 

the failure strength of AAA wall reduces progressively as a AAA enlarges. Evidence of a 

possible decrease in structural integrity of the AAA wall with increasing AAA diameter has also 

been given by Papalambros et al. who showed an increase in MMP-9 activity in large (>6 cm) 

AAAs [189].  Given these previous investigations displaying the connection between AAA wall 

structure and size, both the maximum transverse diameter and normalized local transverse 

diameter (NORD) were taken as potential predictors of wall strength.   

In summary, the variables that were included as potential predictors of AAA wall strength 

were gender (SEX), age (AGE), family history (HIST), smoking (SMK), local ILT thickness 

(ILT), maximum transverse diameter (SIZE), and normalized local transverse diameter (NORD). 

 
 
6.3.2 Specimen Procurement and Variable Recording 
 

Consenting patients undergoing traditional AAA repair surgery at the University of Pittsburgh 

Medical Center provided tissue samples and predictor variable information. All procedures were 

carried out in accordance with guidelines established by the NIH and the University of Pittsburgh 

biomedical Institutional Review Board. The entire dataset was randomly separated into the 

following groups: group A, which consisted of 43 uniaxial specimens from 21 patients, group B, 
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which consisted of 40 uniaxial specimens from 18 patients, and group C, which consisted of a 

union of groups A and B minus any statistical outliers as described in Section 6.3.4.3.  Group A 

was used in the choice of independent variables via backwards stepwise linear regression.  Group 

B could then be used as a means of assessing the variability in model parameters.  Finally, since 

Group C was composed of a union of Groups A and B (and therefore provided the largest 

amount of statistical power), it was used in the derivation of a final statistical model of AAA 

wall strength.  Comparing the 95% confidence intervals for the model coefficients derived from 

regressing each of these groups to the final statistical model provides a means of analyzing the 

variability of these coefficients as well as validating the statistical model. 

 

6.3.2.1 Demographical Data Collection 
 

Values of “global” predictor variables (i.e., these that do not vary spatially within a given AAA) 

were obtained in the following way.  A patient’s age (in years), sex (1/2 = male, -1/2 = female), 

smoking status (1/2 = smoker, -1/2 = nonsmoker), and family history (1/2 = with, -1/2 = without) 

were obtained from the patient’s hospital chart.  The values of 1/2 and -1/2 were chosen for all of 

the binary variables in order to center these variables about zero, which decreases the chances of 

making an incorrect statistical inferences on the model parameters [190, 191].  The AAA 

maximum transverse diameter (in cm) was measured directly on CT or recorded from the 

patient’s chart when CT scans where unavailable. 
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6.3.2.2 Local Variable Measurement 
 

There were two methods for measuring the local ILT thickness and local diameter for a given 

AAA wall specimen.  The first method was that utilized previously in our laboratory (Figure 6-

1) [40].  In this method, a wedge of ILT with AAA wall attached (typical dimensions were 1.5 

cm wide by 4 cm long) was cut and removed from the intact aneurysm. The aneurysm was then 

cut open and the remaining ILT was removed.  The whole ILT specimen with a piece of the wall 

attached was then sliced perpendicular to its longitudinal axis. This resulted in circumferentially 

oriented uniaxial specimens (of typical dimensions 0.2 cm wide by 1.5 cm long) attached as 

small angular segments on the periphery of roughly circular ILT cross-sections.  Measurements 

of two randomly chosen ILT cross sectional diameters at 900 of  each other were taken and 

averaged to provide the local AAA wall diameter for each circumferentially-oriented wall 

sample.  ILT thickness measurements were taken at each end of each circumferentially-oriented 

wall sample, and the average was taken as local ILT thickness for that specimen.  These 

benchtop measurements of ILT thickness and local diameter were  confirmed by measuring the 

ranges of these variables on CT scan when available. 

In the second method, a prolene stitch was placed on the AAA wall specimen to mark the 

longitudinal level of the inferior mesenteric artery (IMA), which was then used as a marker to 

link the location of a particular uniaxial specimen (of typical dimensions 0.2 cm wide by 1.5 cm 

long) with the appropriate longitudinal slice on CT images.  The local diameter and ILT 

thickness were then measured directly on the appropriate slice of the patient’s CT scan.   

For both of the above methods for measuring local diameter, NORD was calculated by 

normalizing the local diameter by the diameter of the infrarenal aorta as predicted from the 

patients’ age and sex using a relationship derived from the literature [192]. 
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Figure 6-5:  Depiction of improved method for determining local transverse diameter and 

ILT thickness for a uniaxial specimen.  The longitudinal level of the IMA was used as a 

landmark on the excised specimen for determining the appropriate CT slice on which local 

ILT and diameter were measured. 
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6.3.3 Uniaxial Tensile Testing 
 

After the measurement of these local parameters, the circumferentially oriented wall samples 

were removed from the ILT and tested to failure in our uniaxial tensile testing device as 

described elsewhere [30].  Briefly, the rectangular specimens were pulled at a strain rate of 

8.5%/min until failure while simultaneously recording tensile load at a sampling rate of 5 Hz.  

The stretch (λ) on the sample was defined as the current change in specimen length normalized 

to original specimen length.  The Cauchy stress (σ) acting on the specimen was then computed 

as  

σ = (f/Ao)*λ                                                              (6.1) 

where f is the current load, Ao is the initial undeformed cross sectional area (Ao = width * 

specimen thickness), and λ is the stretch ratio.  For more details on using this device for uniaxial 

tensile testing of soft tissues the reader is referred elsewhere [30, 38, 59, 178].   

It is worth noting that the thickness of each specimen was measured using either digital 

calipers (n=55) or a laser micrometer (n=28).  All thickness measurements were adjusted for 

differences between these measurement techniques.  Specifically, the thickness values for the 

caliper-measured specimens (n=55) were adjusted using a derived linear relationship between the 

average caliper and laser-measured values.  All specimens were immersed in a container of PBS 

and tested immediately or stored at 4oC and tested within 24 hours. The peak value of Cauchy 

stress attainable by each specimen (i.e., its failure strength) was recorded. Only specimens that 

failed at points remote from the clamps were considered in the present study.   
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6.3.4 Statistical Modeling of AAA Wall Strength 
 

6.3.4.1 The Initial Wall Strength Model 
 

Based on the evidence provided in Section 6.3.1, the initial generalized statistical model for 

predicting AAA wall strength was: 

 

STRENGTH = β0 + β1* ILT + β2*AGE + β3*SIZE + β4*DIA + β5*HIST + β6*SMK       

+ β7*SEX + ε                                                                                                                             (6.2) 

 

where β0, β1, ...,  β7 are regression coefficients.  STRENGTH is the predicted strength of a point 

on the AAA wall in N/cm2, ILT is local attached ILT thickness in cm, AGE is patient’s age in 

years, SIZE is the maximum cross-sectional diameter of the AAA in cm, DIA is the local 

transverse diameter, HIST is family history  (1/2 = with, -1/2 = without), SMK is patient’s 

smoking status (1/2 = smoker, -1/2 = nonsmoker), SEX is patient’s gender (1/2 = male, -1/2 = 

female), and ε is the residual, i.e., the difference between the model predicted local wall strength 

and the measured local wall strength. The choice of 1/2 and -1/2 for the binary variables in the 

model were chosen in order to “center” these covariates, which reduces the chance of making 

incorrect statistical inference regarding the estimates of model coefficients. [190, 193]  Any 

continuous variables were also centered by subtracting each measurement by the mean of that 

variable in group C. 

 

184 



 

6.3.4.2 Assumptions for Linear Regression 
 

In order to utilize linear multiple regression techniques to derive a statistical model for AAA 

wall strength, the data must be meet several assumptions.  Specifically, the assumptions that 

must be met in this type of regression are linearity, constant variance, normality, 

multicollinearity, and autocorrelation [194, 195].  It should be noted that in the present work all 

of these assumptions must be met except that for autocorrelation, which is accounted for using 

linear mixed-effects modeling (detailed in Section 6.3.4.3).  Each of the regression assumptions 

is briefly detailed in the following sections.  For a more complete description of each of these 

assumptions, the reader is referred elsewhere [39, 40, 190, 191, 194, 196].  

 

Linearity 

The assumption of linearity simply states that the dependent variable, in our case strength, can be 

modeled as a linear combination of a set of independent variables (e.g., NORD, ILT).  One way 

to ascertain if this is an appropriate assumption for a given dataset is to visually inspect the 

residuals of the regression.  Simply stated, the ith residual of a regression analysis (εi) is the 

difference between the ith observed value (yi) of strength and its model-predicted value of 

strength (ŷi), or 

εi = yi - ŷi                                                          (6.3) 

Plotting the residuals versus each of the independent variables is an easy way to detect any 

nonlinear relationships.  If the residuals of a regression display any nonlinear patterns, then the 

dependent variable cannot be predicted form the set of chosen linear independent variables.  In 

this case a nonlinear model or a transformation of the independent variables may be required [39, 

40, 194, 196]. 
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 Constant Variance 

One of the most important assumptions in linear regression is that concerning the variance of the 

residuals.  In order for the regression technique to work appropriately, the residuals (equation 

6.3) must be randomly distributed about zero.  Similarly to the assumption of linearity, the 

presence of non-constant variance of the residuals can be detected using a plot of the residuals 

versus each of the independent variables.  Here, the residuals must be randomly be distributed 

about a mean Y (strength) value.  Any deviation from such a plot (e.g., increasing bow-tie 

appearance) is evidence of non-constant variance and therefore must be corrected with 

appropriate statistical techniques.  Typically, taking the square root or the natural logarithm of 

the independent variable displaying the non-constant variance will correct the problem  [39, 40, 

194, 196].  Examples of hypothetical residual plots in which the assumptions of linearity and 

constant variance can be tested are shown in Figure 6-6.  
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Figure 6-6:  Residuals (on all y-axes) versus individual independent variables (Xi’s) for a 

set of hypothetical data.  A) Data satisfy both the linearity and constant variance 

assumptions. B) Data depart from linearity. C) Residual variance increases with Y. D) 

Residual variance increases with Y.  Adapted from [40, 194]. 

 

Normality 

In addition to the requirement that the residuals not display any nonlinear or non-constant trends 

on plots of residuals versus the independent variables, the assumption of normality requires that 

the residuals be normally distributed.  A linear plot of the residuals of strength versus the 

expected normals (normal probability plot) gives evidence for normality.  Normality is required 
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in linear regression in order to guarantee the results of t-tests on the model parameters as well as 

the F-test on the entire regression.  A more formal way of testing for normality is to run the 

omnibus test, which checks the skewness and kurtosis of the data.  Skewness measures the 

direction and degree of asymmetry in a frequency histogram of the data.  Positive skewness 

results when data is shifted to the left of a normal distribution, while negative skewness occurs 

when the data is shifted to the right.  The skewness statistic for a perfectly normal distribution is 

exactly zero, however values of +3 to -3 are typically accepted values for normal or near-normal 

distributions.  Kurtosis measures the ‘flatness’ of the frequency histogram of the data, or the 

‘heaviness’ of the tails of a distribution.  The kurtosis statistic for a perfectly normal distribution 

is equal to 3, however generally values between 2 and 4 are evidence of normality  [39, 40, 194, 

196].  Graphical illustrations of skewness and kurtosis for hypothetical data sets can be seen in 

Figure 6-7. 
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Figure 6-7:  Histograms of hypothetical data illustrating the meaning of skewness and 

kurtosis.  A) Positive skewed distribution; B) Negative skewed distribution.  C) 

Distribution with kurtosis = 4.25; D) Distribution with kurtosis = 1.75.  C) and D) have 

approximately the same skewness.  The dotted lines represent the normal distribution 

curve. Adapted from [40, 194]. 

 
 
Multicollinearity 

Multicollinearity occurs when one or more independent variables are related.  This problem is 

likely to be a problem when there are redundant independent variables in the regression model.  
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The correlation matrix for a regression model can often provide evidence for multicollinearity 

between independent variables.  Independent variable displaying correlations greater than 0.5 

between one another are typically candidates for removal or further transformation [39, 40, 194, 

196].  A more formal test to detect the presence of multicollinearity in a regression model is the 

variance inflation factor (VIF) method.  VIF is defined as  

   VIFi = 1 / ( 1-Ri
2 )                                                  (6.4) 

where Ri
2 is the R2 when the ith independent variable is regressed on the remaining independent 

variables.  Typically, values of VIF > 10 for large datasets (>100) are evidence of 

multicollinearity, since the dependence of the ith independent variable on the remaining 

independent variables is at least 90%.  For smaller datasets however (<50), a VIF greater than 4 

is evidence of multicollinearity between one or more of the independent variables [39, 40, 194, 

196].  The most efficient way of dealing with multicollinearity is to either drop one of the highly 

correlated independent variables or combine these into a single independent variable.   

 

6.3.4.3 Outliers and High Influential Points 
 

In order to use multiple linear regression techniques for variable selection (i.e., to 

determine which parameters are significant in predicting local AAA wall strength), care was 

taken to ensure that no outliers were present in the collected data.  The Hat diagonal and 

Studentized residual were used to detect outliers in X-space and Y-space, respectively.  Any 

Studentized residual values > tn-p-1,0.025 (n=number of observations, p=number of parameters in 

the model) and any Hat diagonal > 2*p/n were identified as outliers [40, 194, 195].   
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Once any candidate X and Y-space outliers are identified, these points were also 

investigated to see if they are highly influential points in the linear regression.  The Cook’s 

Distance measure, Di was used for this purpose and is defined as: 








 −








=

ii

iii
i H

H
p
rD 12

                                                (6.5) 

where ri
2 is the studentized residual, p is the number of independent variables, and Hii is the ith 

hat diagonal for the linear regression [39, 40, 194, 196].  Di is an overall measure of how an 

observation impacts the regression coefficients.  Hutcheson and Sofroniou [197] suggest that any 

values of Di greater than 4/(n-p) where n is the number of data points and p is the number of 

independent variables denotes a highly influential data point. 

  

6.3.4.4 Variable Selection Technique – Backwards Stepwise Regression 
 

Backwards stepwise linear regression techniques were utilized to determine if individual 

predictor variables were significant [40, 194, 195].  Briefly, if the associated p value for a certain 

variable was found to be greater than 0.10, that parameter was considered statistically 

insignificant and removed from the model [40, 194, 195].  If more than one p value was greater 

than 0.10, the parameter with the highest p value was removed and regression analysis was 

repeated using the updated model until all remaining individual p values were less than or equal 

to 0.10 [40, 194, 195]. 
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6.3.4.5 Linear Mixed-Effects Modeling 
 

In order to build the final statistical model for AAA wall strength, linear mixed-effects modeling 

will be utilized.  The use of mixed-effects modeling allows the relaxation of the assumption of 

autocorrelation required in multiple linear regression.  Mixed-effects models are primarily used 

to describe relationships between a response variable (strength) and some covariates in data that 

are grouped according to one or more classification factors [198, 199].   Since for the current 

study there are multiple specimens from an individual patient, the patient is considered to be one 

level of grouping.  A more detailed discussion of mixed-effects modeling the reader is referred 

elsewhere. [198, 199]  Briefly, a mixed-effects model that is compromised of one level of 

grouping takes the form 

                                yi = Xi β + Zi bi + εi,  i=1,…,M                                          (6.6) 

where β is the p-dimensional vector of fixed effects, bi is the q-dimensional vector of random 

effects, Xi and Zi are the known fixed-effects and random-effects regressor matrices, εi is the 

within-group error vector with a Gaussian distribution, and M is the number of groups [198, 

199].  For the current statistical model of strength, we will have one random-effect that is the 

intercept term (βo in equation 6-2), while the covariates (ILT, NORD, HIST, SEX, etc.) will be 

considered as fixed-effects.  Therefore in our model p will be equal to the number of remaining 

significant predictor (independent) variables, q will be one since we have one level of grouping 

(the patient), and M will equal the number of patients in whichever group (A, B, or C) we are 

considering.  It is important to note that although the βi may behave like parameters, formally 

they are just another level of random variation in the model so we do not “estimate” them as 

such.  The mixed-effects modeling was performed in the statistical software R, v. 1.9.1, which is 

freeware available on the world wide web (http://www.r-project.org).   
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6.4 RESULTS AND DISCUSSION 

 

6.4.1 Assumptions for Linear Regression 
 

Linearity 

In order to investigate whether AAA wall strength can be predicted from a linear regression 

analysis, the residuals of the regression were plotted versus each of the independent variables.  

Residual plots displaying any nonlinear trends would suggest the use of a higher order or other 

nonlinear regression model.  All of the residuals displayed random variation versus each 

independent variable, suggesting multiple linear regression can be used in predicting AAA wall 

strength (Appendix J).   

 

Constant Variance 

Similar to the check for the assumption for linearity, the residual plots versus each independent 

variable can be used to check for departures from constant variance.  These plots resulted in a 

random array of data points for all independent variables (Appendix K) except for the 

independent variable ILT which displayed a decreasing bow-tie appearance (Figure 6-8).  This 

non-constant variance was corrected by transforming the variable ILT to its square root, ILT1/2, 

which resulted in a more random variance for all values of this independent variable (Figure 6-

9).  Equation (6.2) was therefore updated to 

STRENGTH = β0 + β1* ILT1/2 + β2*AGE + β3*SIZE + β4*DIA + β5*HIST + β6*SMK       

+ β7*SEX + ε                                                                                                                             (6.7) 
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where the independent variable ILT1/2 now has units of cm1/2, and all other independent variables 

in the regression equation remain unchanged.   
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Figure 6-8:  Residuals of S versus ILT displaying decreasing bow-tie appearance (red 
dotted lines) 
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Figure 6-9:  Residuals of S versus corrected variable ILT1/2 
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Normality 

The normal probability plot for the regression of Group A data to equation (6.6) displayed a 

nearly linear relationship (Figure 6-10).  In order to more quantitatively test for normality, an 

omnibus test was run on this regression which resulted in a skewness value of -1.82 and a 

kurtosis value of 2.09.  Both of these values lie within the typical bounds set for identifying non-

normal distributions.  A histogram of the data with these values of skewness and kurtosis is 

displayed in Figure 6-11. 

 

 

Figure 6-10:  Normal probability plot when regressing Group A data to equation 6.7 
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Figure 6-11:  Histogram of residuals when regressing Group A data to equation 6.7 

 

Multicollinearity 

As stated in Section 6.3.4.2, multicollinearity can be detected by investigating the correlation 

matrix between independent variables used in regression analysis.  The correlation matrix 

resulting from the multiple linear regression of equation (6.6) to the data from Group A resulted 

in a correlation of 0.52 between the variables DIA and SIZE (Table 6-2).  The correlations 

between all remaining variables were less than 0.39.  This regression also resulted in a large 

value of VIF (4.19) for the independent variable DIA in comparison to all other variables (Table 

6-3).   
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Table 6-2:  Correlations between independent variables after regression of equation 6.7. 
Shaded cells represent high (>0.5) correlations. 

 
 AGE HIS DIA SEX SIZE SMK ILT1/2 S 

AGE 1.00 0.01 -0.03 -0.06 -0.19 -0.16 -0.02 0.00 
HIS 0.01 1.00 0.06 -0.39 -0.16 -0.14 -0.08 -0.41 
DIA -0.03 0.06 1.00 -0.28 0.52 -0.25 0.23 -0.47 
SEX -0.06 -0.39 -0.28 1.00 -0.15 0.08 0.16 0.34 
SIZE -0.19 -0.16 0.52 -0.15 1.00 0.13 -0.05 0.09 
SMK -0.16 -0.14 -0.25 0.08 0.13 1.00 0.12 0.07 
ILT1/2 -0.02 -0.08 0.23 0.16 -0.05 0.12 1.00 -0.42 

S 0.00 -0.41 -0.47 0.34 0.09 0.07 -0.42 1.00 
 

 

Table 6-3:  Variance inflation factors (VIF) after regression of equation 6.7 
 

Multicollinearity 
Independent Variable VIF R2 vs other variables 

AGE 1.08 0.07 
HIS 1.38 0.28 
DIA 4.19 0.76 
SEX 1.56 0.36 
SIZE 1.62 0.38 
SMK 1.36 0.26 
ILT1/2 1.68 0.41 

 

In order to correct for this multicollinearity, the independent variable SIZE was dropped 

from the regression analysis.  This choice was made primarily due to the fact that DIA is capable 

of detecting changes in strength within any given AAA, while SIZE is not.  In order to be able to 

compare changes in dilation from patient to patient (DIA may vary simply due to changes in the 

size of a person’s nonaneurysmal aorta), the variable DIA was replaced by the variable NORD, 

which is defined as the variable DIA normalized to a value of nonaneurysmal infrarenal diameter 
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based on  the patients sex and age [192].  Therefore, the resulting regression equation for AAA 

wall strength was given by: 

STRENGTH = β0 + β1* ILT1/2 + β2*AGE + β3*NORD + β4*HIST + β5*SMK   

+ β6*SEX+ε                                                                                                                   (6.8) 

where NORD is a dimensionless independent variable.  The above equation was further analyzed 

to determine which independent variables are required in noninvasively predicting AAA wall 

strength. 

 

6.4.2 Outliers and Highly Influential Points 
 

The Hat diagonal values as well as the Studentized residuals for Group A data are shown in 

Table 6-4.  As is shown in this table, there were 2 data values that were outliers in X space since 

they displayed Hat diagonal values greater than 2*p/n = 0.279.  There were also 3 values that 

were Y-space outliers based on the studentized residual value of tn-p-1,0.025 = t36,0.025 = 2.04.    Of 

these 5 X and Y-space outliers, two were considered highly influential points as their Cook’s 

distance value was greater than 4/(n-p) = 0.108.  These two data points were removed from the 

Group A dataset.  A similar analysis was performed on the Group B data, which resulted in no 

X-space or Y-space outliers.   

In summary, there were originally 43 specimens from 21 patients in Group A, of which 2 

were removed as highly influential outliers.  There were no X-space or Y-space outliers detected 

in group B, which consisted of 40 specimens from 18 patients.  This left 81 specimens from 38 

patients in group C from which the final statistical model for AAA wall strength was derived. 
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Table 6-4:  Hat diagonal and studentized residuals for regressing Group A data to equation 
6.8.  Shaded cells represent outliers or highly influential points. Data points 6 and 35 were 
removed as highly influential outliers. 
 

Data Point Studentized Residual Hat Diagonal Cook's D 
1 -0.9946 0.1837 0.0318 
2 0.2978 0.1822 0.0028 
3 1.986 0.2142 0.9527 
4 -1.555 0.1343 0.0536 
5 -0.3879 0.2549 0.0074 
6 -3.1161 0.1769 0.2981 
7 -0.2286 0.249 0.0025 
8 0.4251 0.1511 0.0046 
10 0.0397 0.1445 0 
11 0.4799 0.2788 0.0127 
12 0.6777 0.2185 0.0183 
13 0.1785 0.2269 0.0013 
14 0.8793 0.2605 0.0389 
15 0.3233 0.2289 0.0044 
16 -0.3215 0.1687 0.003 
17 -0.4935 0.1666 0.007 
18 0.7306 0.2086 0.0201 
19 -0.197 0.159 0.001 
20 -0.6482 0.1658 0.0119 
21 -0.2249 0.1891 0.0017 
22 -0.8185 0.1847 0.0217 
23 1.445 0.1443 0.0503 
24 0.0924 0.0767 0.0001 
25 0.5302 0.1044 0.0047 
26 0.5708 0.1363 0.0073 
27 2.3211 0.1229 0.1079 
28 0.0276 0.1044 0 
29 0.6682 0.2064 0.0166 
30 0.5954 0.2066 0.0132 
31 0.5769 0.2099 0.0126 
32 -0.4332 0.1947 0.0065 
33 -0.1887 0.1746 0.0011 
34 -0.4366 0.1939 0.0066 
35 -2.1812 0.2732 0.2554 
36 0.6372 0.1939 0.0139 
37 0.6958 0.0908 0.0069 
38 0.3411 0.0663 0.0012 
39 -0.7275 0.0913 0.0076 
40 -1.9643 0.082 0.0492 
41 0.325 0.0798 0.0013 
42 0.0694 0.1006 0.0001 
43 0.5273 0.2123 0.0145 
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6.4.3 Backwards Stepwise Regression – Variable Selection 
 

A backwards stepwise linear regression technique was utilized on the Group A data set to 

determine which of the independent variables in equation 6.8 are necessary in noninvasively 

predicting AAA wall strength.  This analysis sequentially revealed that SMK (p = 0.93) and 

AGE (p = 0.14) were statistically insignificant predictors. Therefore the final model used in 

deriving a model of AAA wall strength was 

 

STRENGTH=β0 +β1*ILT1/2+ β2*NORD+ β3*HIST+ β4*SEX+ε                       (6.9). 

 

This model was used in the derivation of a final statistical model for AAA wall strength using 

the linear mixed-effects modeling described in the following section. 

 

6.4.4 Mixed-Effects Modeling 
 

The 95% confidence intervals for the mixed-effect model parameters for groups A, B and C are 

displayed in Figure 6.12.  The mixed-effect model parameter values and their associated p-

values for the fit to group C data are summarized in Table 6-5.  The final model derived from 

group C is then 

 

STRENGTH  = 72.9  - 33.5 * (ILT1/2-0.79) – 12.3 * (NORD-2.31) –                    

 24 * HIST + 15 * SEX    (6.10)  
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We find that this model (equation 6.10) corresponds to the experimental data from group C 

moderately well (R2 = 0.60, Figure 6-13).   

Figure 6-12:  95% CI’s intervals for the mixed-effects model parameters for all Groups 
 
 

Table 6-5:  Parameter values for Group C linear mixed-effects regression 
 

Independent 
Variable 

Lower 95% CI Coefficient Upper 95% CI p value 

Intercept 62.7 72.9 83.1 < 0.001 

ILT1/2 -50.6 -33.5 -16.4 < 0.001 

NORD -24.5 -12.4 -0.2 0.04 

HIST -44.7 -24 -3.5 0.09 

SEX 3.4 15 33.3 0.004 
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Inspection of equation 6.10 provides several insights as to its physical meaning:  

 

• For two patients with the same gender and identical AAAs, the one with family history 

has a AAA that is globally weaker by 24 N/cm2 compared to the one without family 

history. 

• For two patients with the same family history and identical AAAs, a female will have a 

AAA that is globally weaker by 15 N/cm2 compared to a male. 

• For any two points within any given AAA with the same NORD, an increase in ILT1/2 of 

1.0 results in a corresponding decrease in strength of 33.5 N/cm2 

• For any two points within any given AAA with the same ILT1/2, an increase in NORD of 

1.0 results in a corresponding decrease in strength of 12.3 N/cm2 

 

6.4.5 Model Application 
 

 Figure 6-12 displays the relatively large span of the 95% confidence intervals for the Group B 

data set.  It should be noted that the application of this model can only be used within the range 

of covariates used in its construction.  For our final model (group C), the ranges of NORD and 

ILT1/2 are (1.06, 3.92) and (0, 1.9), respectively.  The fact that the confidence intervals for group 

C in Figure 6-12 do not include zero confirms that each respective variable is positively or 

negatively correlated with AAA wall strength.  In addition, one can see that the model predicted 

experimentally measured wall strength reasonably well for group C (Figure 6-13). 
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Figure 6-13:  Predicted versus measured wall strength for Group C 
 

The characteristics of the four patients whose AAA wall strength distributions were 

evaluated for demonstration purposes are shown in Table 6-6. A custom written Matlab script 

was created which calculates the strength using equation 6.10 for each node of a AAAs finite 

element mesh (Appendix L).  The 3D distribution of wall strength for each AAA reveals a 

unique, complex pattern (Figure 6-14). In general, wall strength values are higher at both neck 

regions and lower in the bulge region. Note that AAA 3 did not include any ILT, which resulted 

in strength variations dependent only on the local diameter of the AAA.  Local wall strength 

values predicted for the four AAA studied ranged from 56.3 N/cm2 to 132.9 N/cm2. 
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Table 6-6:  Characteristics of four AAA patients used in the demonstration of AAA wall 
strength 

 
Patient  Max. 

Calculated 
Strength 
(N/cm2) 

Min. 
Calculated 
Strength 
(N/cm2) 

Max. ILT 
Thickness 

(cm) 

Gender Size 
(cm) 

Hist 

1 133 62 2.3 M 6.0 No 

2 118 56 3.0 M 6.1 No 

3 111 83 0.7 F 6.4 No 

4 125 77 1.8 M 6.4 No 
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Figure 6-14:  Anterior (left) and posterior (right) view of the 3D distribution of AAA wall 
strength for four AAA patients using equation 6.10. 
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6.4.6 Electively Repaired AAAs 
 

In order to investigate the differences in AAA wall strength using the previously derived model 

[39, 40] compared to model derived in the current work, the wall strength was calculated for 

each of the 21 AAA models described in Section 5.2.5 (Table 6-7).  A representative 

comparison between these methods is shown in Figure 6-15 for AAA8.  The mean peak wall 

strength for these AAAs was 126 ± 2.15 and 229.34 ± 16.21 N/cm2 for the current and previous 

AAA strength models, respectively (p < 0.001).  The mean minimum wall strength for these 

AAAs was 93.88 ± 3.79 and 152.25 ± 14.85 N/cm2 for the current and previous AAA strength 

models, respectively (p < 0.001).  The mean of the average strength acting on each of these 

AAAs was 112.39 ± 2.80 and 205.76 ± 13.97 N/cm2 for the current and previous AAA strength 

models, respectively (p < 0.001).  The primary reason that the new strength method resulted in 

smaller peak, minimum, and mean strength values was due to the use of a laser micrometer 

measured thickness value in the uniaxial tensile tests, as opposed to the contacting method used 

previously which likely underestimated the thickness in these tests. 

 

Table 6-7:  Strength values using the old and new methods for AAA strength prediction 

 New Strength (N/cm ) Old Strength (N/cm ) 
 

2 2

Aneurysm Peak Min Mean Peak Min Mean 
AAA1 113 103.9 185.4 84.2 .8 72.2 123.4 
AAA2 113.3 75.4 94.8 233.7 1  

98.7 
252.3 
314.4 

AAA8 
AAA9 

281.4 

18.2 155.4 
AAA3 137.1 119.3 133.8 259.2 173.0 237.4 
AAA4 120.8 98.7 111.8 298.6 169.4 224.2 
AAA5 139.3 127.5 397.2 360.6 384.2 
AAA6 138.1 130.5 133.8 139.9 188.4 
AAA7 122.0 80.8 104.0 158.4 233.9 

137.9 88.6 116.2 372.3 315.8 349.4 
129.8 106.3 118.8 232.9 122.0 170.3 

AAA10 136.2 112.7 128.8 161.7 213.3 
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Table 6-7 (conti

A 83.7 100.3 199.2 112.5 160.8 

113.4 
122.7 108.5 318.7 158.3 244.1 

138.7 112.0 298.4 165.6 219.4 

100.9 255.4 131.5 186.3 
159.1 

126.2 265.1 152.2 

nued)      
AAA11 111.5 82.4 94.8 209.0 113.6 146.6 

AA12 112.9 
AAA13 118.3 74.5 97.3 254.1 132.2 200.3 
AAA14 134.8 128.6 131.8 168.6 84.2 127.3 
AAA15 118.7 76.5 103.7 248.5 172.5 
AAA16 76.3 
AAA17 136.1 95.9 118.0 231.3 105.0 166.4 
AAA18 96.7 
AAA19 122.4 76.0 104.6 274.2 130.5 204.4 
AAA20 122.8 86.1 
AAA21 123.4 99.4 115.1 281.5 213.0 
MEAN 93.9 112.4 205.8 
SEM 2.2 3.8 2.8 12.3 14.9 14.0 

 

igure 6-15:  A representative 3D distribution of AAA wall strength for the new and old 
methods for predicting AAA wall strength 

Strength
N/cm2

Strength
N/cm2

New Old

Strength
N/cm2

Strength
N/cm2

New Old
 

 

F

 

207 



 

 

6.4.7 Ruptured Versus Non-ruptured AAAs 
 

In order to investigate the differences in AAA wall strength between ruptured and non-ruptured 

AAAs the peak, minimum, and mean wall strengths for both the old (Table 6-8) and new 

methods (Table 6-9) was calculated for each of the 5 non-ruptured and 9 ruptured AAA models 

described  5.2.5 in Section .  A representative comparison between a ruptured and non-ruptured 

AAA using t  of wall strength estimation is shown in Figure 6-16he new method  for N3 and R15.   

The mean peak wall strength using the old method for AAA wall strength estimation was 

253.60 

 AAA wall strength estimation 

was 11

non-ruptured AAAs (7.10 ± 0.38 vs.  6.14 ± 0.54, p = 0.17). 

± 12.96 and 263.28 ± 22.16 N/cm2 for the ruptured and non-ruptured AAA models, 

respectively (p = 0.69).  The mean minimum wall strength using the old method for AAA wall 

strength estimation was 110.96 ± 12.72 and 151.41 ± 11.39 N/cm2 for the ruptured and non-

ruptured AAA models, respectively (p = 0.06).  The mean average wall strength using the old 

method for AAA wall strength estimation was 179.57 ± 13.42 and 202.90 ± 12.94 N/cm2 for the 

ruptured and non-ruptured AAA models, respectively (p = 0.28). 

The mean peak wall strength using the new method for

9.41 ± 4.48 and 137.06 ± 1.49 N/cm2 for the ruptured and non-ruptured AAA models, 

respectively (p = 0.02).  The mean minimum wall strength using the new method for AAA wall 

strength estimation was 81.18 ± 3.45 and 108.33 ± 10.18 N/cm2 for the ruptured and non-

ruptured AAA models, respectively (p = 0.03).  The mean average wall strength using the new 

method for AAA wall strength estimation was 103.04 ± 3.02 and 124.52 ± 5.84 N/cm2 for the 

ruptured and non-ruptured AAA models, respectively (p = 0.003).  It should be noted that there 

were no statistical differences in the maximum cross-sectional diameters between ruptured and 
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Table 6-8:  Strength values using the old statistical model for ruptured and non-ruptured 
AAAs 

Old Strength (N/cm2) 
NR AAA Peak Min Mean RAAA Peak Min Mean 

N1 247.3 150.8 191.9 R1 169.5 87.3 122.6 
N2 249.7 139.1 206.8 R2 254.3 191.1 211.8 
N3 206.1 130.5 213.7 61.2 108.6 

1  1  
195.1 

MEAN 263.3 151.4 202.9 M  

164.6 R3 
N4 272.4 41.6 206.6 R4 273.7 20.2 187.8 
N5 340.9 244.6 R5 277.2 135.5 196.2 

    R6 297.0 129.2 230.3 
    R7 256.7 93.8 170.5 
    R8 274.0 92.4 204.5 
    R9 266.4 87.9 183.6 

EAN 253.6 111.0 179.6 
EM 13.0 12.7 13.4 SEM 22.2 11.4 12.9 S  

 

 

able 6-9:  Strength values using the new statistical model for ruptured and non-ruptured 
AAAs (*,+,# p < 0.05) 

New Strength (N/cm2) 

T

NR AAA Peak Min Mean RAAA Peak Min Mean 
N1 131.4 90.6 108.2 R1 116.0 89.5 99.5 
N2 138.2 130.7 135.3 R2 90.9 85.1 87.0 
N3 137.1 132.8 136.4 95.7 113.4 
N4 139.9 104.6 R4 

 116.0 

MEAN 137.1* 108.3+ 124.5# MEAN 

134.7 R3 
131.8 134.4 81.5 105.2 

N5 138.8 82.9 112.6 R5 111.9 68.8 91.4 
   R6 68.5 101.7 
    R7 121.6 70.5 107.6 
    R8 123.1 92.4 111.1 
    R9 124.3 78.8 110.4 

119.4* 81.2+ 103.0# 
EM 4.5 3.5 3.0 SEM 1.5 10.2 5.8 S  
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Figure 6-16:  3D strength distribution on a representative ruptured and non-ruptured AAA 
using the current wall statistical model 
 

 

 

6.4.8 Discussion 
 

Rupture of an individual AAA, like failure of any loaded structure, occurs when the local stress 

applied to the wall exceeds the local strength of the tissue. In order to evaluate the risk of rupture 

for a given AAA, information on both local stress and local strength are required. Our results 

demonstrate that local wall strength may be predicted by certain clinical noninvasively-

measurable parameters via equation 6.10. This model contains four, non-invasively measurable 



 

predictors: the square root of local ILT thickness, normalized local diameter, patient’s sex, and 

the patient’s family history of AAA.  The noninvasive statistical model for predicting AAA wall 

strength derived here predicted a statistically weaker wall for ruptured AAAs than for non-

ruptured AAAs.  In fact, the current model performed better than either the previously derived 

AAA wall strength model or the clinically utilized maximum cross sectional diameter in 

identifying ruptured AAAs.   

 The traditional approach of using AAA size to guide decisions for elective AAA repair 

has faced strong challenge because of its inability to accurately predict rupture for all AAA [170, 

200].  Recent studies have been focused on studying in vivo stress levels in AAA [28, 34, 35, 40, 

55] and it has been shown that aneurysms smaller than a certain size threshold can experience 

higher peak stress than larger aneurysms [28, 34, 35, 40, 55].  While these studies have 

suggested that using peak wall stress to predict the rupture potential for individual AAA would 

be an improvement over using maximum diameter alone, stress is only one of two factors that 

dictate the failure of a material, including the AAA wall. For example, two aneurysms with the 

same peak stress levels but different wall strength distributions might have a different rupture 

potential. In order to most accurately predict the rupture potential for each individual AAA, 

therefore, both the stress and strength distributions are necessary. By combining the technique 

reported here for predicting in vivo wall strength distribution with our companion method of 3D 

AAA wall stress analysis [28, 55], a new and improved means to predict the rupture potential for 

individual AAA may be possible.  It is important to note that the strength prediction model 

derived here is noninvasive in nature. Each of the predictor variables - patient’s sex, normalized 

local AAA diameter, family history, and local ILT thickness - are noninvasively obtainable. 
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Therefore, in vivo AAA wall strength distribution for any given patient is clinically feasible and 

cost effective. 

  

Previous work in our laboratory resulted in a statistical model for wall strength using 

multipl

 141.26  - 17.16* ILT + 3.39*AGE - 257.30*NORD - 69.5*HIST          (6.11) 

whe  

e linear regression techniques [39, 40].  This statistical model consisted of four variables 

and took the form 

STRENGTH =

re ILT is the thickness of intra-luminal thrombus (cm), AGE is the patient’s age (years),

NORD is the local diameter normalized to the maximum diameter, and HIST is the patient’s 

family history of aneurysm.  As can be seen from Figure 6-15 and Tables 7-9, this model 

resulted in larger stress values than for the currently developed model.  This difference is most 

likely due to the correction made for the sample thickness in the strength measurements (uniaxial 

testing, Section 6.3.3).  The previous model also predicted an increase in wall strength for 

increasing age.  This result was not found in the current study, which may have been due to the 

large increase in sample size for the current model compared to the previous model (39 versus 11 

patients, respectively).  It is also interesting to note that the current model predicted a significant 

decrease in mean AAA wall strength for ruptured versus non-ruptured AAAs, while the previous 

model did not (Figure 6-17). 
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Figure 6-17:  Mean AAA wall strength using the old and new models for ruptured vs. non-
ruptured AAAs 

The currently accepted for criterion for determining a given AAAs risk of rupture is the 

max

 

imum cross sectional diameter.  While a surgeon will not decide to perform surgery based 

solely on the maximum diameter (there are other factors taken into account), a diameter greater 

than 5.5 cm remains the globally accepted quantitative criteria for determining a given 

aneurysm’s risk of rupture.  The current method for quantitatively assessing an individuals 

rupture risk includes the maximum cross sectional diameter in the independent variable NORD, 

while also including other patient-specific predictors such as gender, family history, and the 

presence and amount of ILT present.  The fact that the patient’s sex remained in the current 

statistical model for AAA wall strength is not surprising given the recent reports that women 
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have recently been reported as having a higher growth and rupture rate than men [176, 201, 202].  

Similarly, a recent investigation by Hans et al. showed that rupture risk of AAAs may be 

associated with the AAA volume, which supports our finding that ILT is an important predictor 

of AAA strength [203]. 

As with any modeling technique, there are certain limitations that should be kept in mind 

reg

t constraint of the statistical model (6.10

arding the statistical model derived here. Due to restrictions associated with open surgical 

procedures, we were limited to AAA wall samples from the anterior region of AAA only. 

Ideally, samples would be obtained from the anterior, posterior and both lateral regions of AAA.  

This limitation should be kept in mind whenever utilizing the proposed statistical model.  The 

use of an estimated nonaneurysmal diameter to normalize the local diameter was used for two 

reasons: CT scans were not available for all patients, and the authors believe that the proximal 

aorta of each AAA may not serve as an appropriate measure of the nonaneurysmal aorta, since 

this region can often times be dilated as well.  It should also be noted that the local cross 

sectional diameter was measured as the average of two orthogonally oriented diameter 

measurements. Therefore, this reflects only the average of circumferential radius of curvature 

when in reality the AAA wall also has a longitudinal radius of curvature and both radii can vary 

spatially [204].  

An importan ) is that the range of the original data 

from which it was constructed limits its application. For example, if one would like to predict the 

wall strength distribution for a AAA which contained an ILT thickness greater than 3.6 cm, the 

strength model derived from Group C can not be used reliably since this ILT thickness is outside 

of the range utilized in its derivation.  In addition, using a “worst-case scenario” from the entire 

dataset (SEX=Female=-0.5, HIS=Positive=0.5, ILT1/2=1.9, NORD=3.92), the strength calculated 
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is –3.59 N/cm2.  While negative wall strength is not physically reasonable, this occurs simply 

due a lack of a strength measurement with these worst-case scenario parameter values used in the 

derivation of the model.  However, since for 38 patients and 81 specimens, no such combination 

exists, we would expect this occurrence to be of relatively low probability.  In order to avoid this 

issue completely, a very large number of patients covering the entire range of possible predictor 

variables would be required, a task which lies outside the scope of the current work. 

It is also important to note that in the present work it is assumed that the failure criterion of 

the AAA wall (its strength) can be adequately measured and modeled using uniaxial techniques.  

The fact that the aorta itself is a complex composite of collagen and elastin fibers suggests that 

assuming this material fails in a manner similar to a typical engineering material (e.g., steel etc.) 

may not be correct.  In fact, a recent report by Ohashi et al. has shown that the biaxial inflation of 

human thoracic aneurysms results in a preferential tearing of the aortic wall in the longitudinal 

direction [205].  The actual failure mechanisms responsible for AAA rupture remain unknown.  

An alternative mathematical description of the gradual dilation and failure of AAAs has recently 

been derived by Watton et al. [206].  In this work the AAA is modeled as a two-layered 

cylindrical membrane using nonlinear elasticity and physiologically realisitic constitntuve 

relations to mathematically model the growth of a AAA in-vivo.  While it is clear that the 

gradual expansion of a AAA corresponds with a reorganization of the extracellular matrix, it 

remains unclear which of the structural components (e.g., collagen) may be primarily responsible 

for the eventual failure of the AAA wall.  The structural changes of the extracellular matrix 

present in AAAs have not been included in the current estimations of either stress or strength.  

Identifying these changes and how they correlate with the gradual dilation of the abdominal aorta 

may elucidate whether the inclusion of such information would benefit the estimations of stress 
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and strnength in our current RPI.  In addition, taking a closer look at the structural changes 

present in specimens received from ruptured AAAs may provide evidence for the prevailing 

mechanisms involved in AAA rupture. 

In summary, a four-parameter statistical model has been successfully developed to 

noninvasively estimate wall strength distribution of any AAA. Despite the noted limitations, the 

current model predicts local AAA wall strength moderately well (Figure 6-13).  Results here 

also suggest that the newly developed model for estimating AAA wall strength may identify 

those AAAs at high risk of rupture better than the clinically accepted maximum transverse 

diameter criterion.  By combining this technique with the AAA wall stress calculation technique 

developed in our laboratory, a more accurate assessment for AAA rupture potential may be 

possible. The successful implementation of such a technique would likely benefit the 

management of patients with AAA. 
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7.0 RUPTURE POTENTIAL INDEX 

 

 

7.1 INTRODUCTION 

 

Abdominal aortic aneurysms are characterized by the structural remodeling resulting in the 

gradual weakening and expansion of the aortic wall.  This disease occurs over the time course of 

several years and can typically remain quiescent until the strength of the aortic wall is unable to 

withstand the forces acting on it as a result of the luminal blood pressure – resulting in AAA 

rupture.  Since the development and progression of AAAs can often times be asymptomatic, 

rupture of AAA can often times go unnoticed.  The clinical treatment of those patients whose 

AAA is diagnosed presents a unique dilemma for the surgeon: surgery should only be 

recommended when the risk of rupture of the AAA outweighs the risks associated with the 

surgical procedure.   

 This unique clinical situation has led researchers to investigate several different 

predictors of AAA rupture.  The most common clinical quantitative measure of aneurysm rupture 

risk has been the maximum transverse diameter [202].  Some of the other predictors proposed in 

the literature include cyclic strain via ultrasound [148], ILT volume [203], and growth rate [207, 

208] among others.  For example, Fillinger et al. also recently utilized the finite element method 

to demonstrate that peak wall stress as opposed to maximum diameter may better identify those 
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AAAs at high risk [33].  This study utilized techniques for noninvasively estimating wall stress 

previously derived in our laboratory which have since been improved with the inclusion of ILT 

[55] and anisotropy (Chapter 5).  Clearly these estimations of wall stress represent improvements 

over previous predictions of wall stress based on the Law of LaPlace, hypothetical AAA 

geometries, and linear material properties [95, 127, 128, 145, 146, 149, 209].  Wang et al. first 

developed a statistical model for noninvasively predicting AAA wall strength.  This model has 

been improved in the present work with the addition of data as well as several other notable 

improvements (Table 6-1). 

 Since AAA rupture occurs when the stress acting on the wall exceeds its strength, the 

prediction of AAA rupture should include both of these mechanical parameters.  The techniques 

utilized in the current work for stress (Chapter 5) and strength (Chapter 6) estimation can be 

combined such that a rupture potential index (RPI) can be defined which represents the spatial 

distribution of rupture potential on a patient-specific basis.  The RPI is therefore proposed here to 

be a more dependable criterion for rupture potential than the clinically accepted maximum 

transverse diameter. 
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7.2 METHODS 

 

7.2.1 Rupture Potential Index Calculation 
 

The rupture potential index (RPI) is defined as the ratio of local wall stress to local wall strength:   

i

i
i Strength

StressRPI = .                                                           (7.1) 

The subscript i in equation (7.1) corresponds to a given (X,Y,Z) location on the AAA wall.    

Once the stress for a given node in the finite element simulation was determined (Chapter 5), the 

locally acting wall strength was calculated for this node using equation (6.10).  The 3D 

distribution of RPI is then calculated by dividing each node’s stress and strength values.  The 

calculation of the locally acting RPI for a given AAA was done in the Matlab script described in 

Section 6.4.5 (Appendix L). 

   

7.2.2 Comparison of Old versus New RPI Techniques 
 

In order to compare the RPI using the previously methods of stress and strength versus those 

derived in the current work, the RPI was calculated using each method for all 21 electively 

AAAs described in Section 5.2.5.   

 

7.2.3 Ruptured versus Electively Repaired AAAs 
 

The ability of the RPI to predict AAAs who are at high risk of rupture was analyzed by 

calculating the RPI for all 5 non-ruptured and 9 ruptured AAAs described in Section 5.2.5.  The 

improvements in rupture prediction using the current versus previous model of RPI were also 
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investigated by comparing the ruptured and non-ruptured RPI values using both methods.  The 

new method of RPI was also compared to the maximum transverse diameter criterion for rupture 

prediction. 

  

7.3 RESULTS AND DISCUSSION 

 

The stress, strength, and RPI for a representative AAA using the methods derived in Chapter 5 

and 6 is shown in Figure 7-1.  The current approach to assessing this AAA’s risk of rupture 

would suggest this aneurysm is at 32% of its capacity to withstand rupture. 

Stress (N/cm2) Strength (N/cm2) RPIStress (N/cm2) Strength (N/cm2) RPI

 

Figure 7-1:  Noninvasively predicted stress, strength and RPI using the current techniques 
for stress and strength estimation 

 

7.3.1 Comparison of Old versus New RPI Techniques 
 

The peak and mean RPI values for each of the electively repaired AAAs are shown in Table 7-1.  

The peak RPI values for the new RPI were statistically larger than that utilized for the previous 
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method (0.34 ± 0.03 vs. 0.22 ± 0.03, p < 0.001).  In addition, the mean RPI values for the new 

RPI were statistically larger than that utilized for the previous method (0.14 ± 0.01 vs. 0.10 ± 

0.01, p < 0.001).  A representative comparison of the previous and current RPI predictions is 

shown in Figure 7-2 for AAA16. 

 

Table 7-1:  Peak and Mean RPI values for all electively repaired AAAs 
 

 New RPI Old RPI 
Aneurysm Peak Mean Peak Mean 

AAA1 0.39 0.18 0.39 0.18 
AAA2 0.35 0.13 0.21 0.09 
AAA3 0.45 0.18 0.21 0.10 
AAA4 0.62 0.30 0.34 0.16 
AAA5 0.29 0.13 0.09 0.04 
AAA6 0.53 0.22 0.37 0.17 
AAA7 0.35 0.11 0.19 0.05 
AAA8 0.28 0.08 0.10 0.03 
AAA9 0.12 0.03 0.07 0.02 

AAA10 0.52 0.22 0.37 0.16 
AAA11 0.41 0.13 0.22 0.10 
AAA12 0.29 0.13 0.17 0.09 
AAA13 0.19 0.07 0.10 0.04 
AAA14 0.40 0.25 

0.07 

MEAN 

0.52 0.28 
AAA15 0.35 0.14 0.25 0.10 
AAA16 0.35 0.14 0.17 0.07 
AAA17 0.34 0.12 0.27 0.10 
AAA18 0.21 0.06 0.12 0.04 
AAA19 0.33 0.12 0.15 
AAA20 0.19 0.07 0.10 0.05 
AAA21 0.28 0.16 0.15 0.09 

0.34 0.14 0.22 0.10 
SEM 0.03 0.03 0.01 0.01 
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Figure 7-2:  Comparison of old versus new techniques for RPI for a representative 
electively repaired AAA (AAA16) 

 

 

7.3.2 Ruptured versus Non-ruptured AAAs 
 

The peak and mean RPI values derived from the old method for stress and strength estimation 

are shown in Table 7-2.  Table 7-3 lists the RPI values for the current estimations of stress and 

strength.  The differences between the ruptured and non-ruptured peak RPI values were larger 

for the current RPI as compared to the previously developed RPI technique (p = 0.10 vs. p = 

0.79, respectively).  These differences were not as prominent when comparing the mean RPI 

values between the two groups (p = 0.35 vs. p = 0.58, respectively).  A representative 

comparison of RPI for a ruptured (R8, maximum diameter = 5.20 cm) and non-ruptured (N4, 

maximum diameter = 5.23 cm) AAA is shown in Figure 7-3.  There was no significant 
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difference between the maximum transverse diameter of the ruptured and non-ruptured AAAs 

(7.10 ± 0.38 vs. 6.14 ± 0.54, respectively, p = 0.17). 

 

Table 7-2:  RPI values derived from the old stress and strength estimation techniques (* p 
= 0.79  ; + p = 0.58) 

 
Old RPI 

NR AAA Peak 
0.25 

Mean RAAA Peak Mean 
N1 0.09 R1 0.23 0.07 
N2 0.22 0.12 R2 0.28 0.14 
N3 0.37 0.15 R3 0.71 0.26 
N4 0.23 0.11 R4 0.22 0.10 
N5 0.19 0.08 R5 0.32 0.13 

   R6 0.19 0.07 
   R7 0.40 0.20 
   R8 0.20 0.10 
   R9 0.20 0.07 

MEAN 0.25* 0.11+ MEAN 0.30* 0.13+ 
SEM 0.03 0.01 SEM 0.06 0.02 

 

 

Table 7-3:  RPI values derived from the new stress and strength estimation techniques (* p 
= 0. 10; + p = 0.35) 

 
New RPI 

NR AAA Peak Mean RAAA Peak Mean 
0.07 N1 0.41 0.14 R1 0.31 

0.31 0.18 R2 0.64 0.37 
N3 0.44 0.18 R3 0.51 0.22 
N4 0.27 0.16 R4 0.42 0.16 
N5 0.38 0.15 R5 0.55 0.24 

   R6 0.57 0.16 
   R7 0.60 
   R8 0.38 0.17 
   R9 0.28 0.13 

MEAN 0.36* 0.16+ MEAN 0.20+ 
SEM 0.03 0.01 SEM 0.04 0.03 

N2 

0.29 

0.47* 
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Figure 7-3:  Representative comparison of the current RPI between a ruptured (R8, 
maximum diameter = 5.20) and non-ruptured AAA (N4, maximum diameter = 5.23 cm) 

 

 

7.3.3 Summary 
 

The currently developed techniques resulted in an increased mean and peak value of RPI for a set 

of electively repaired AAAs in comparison to the previously developed RPI technique [40].  In 

addition, comparisons of peak RPI values for ruptured and non-ruptured AAAs suggest an 

improvement in rupture prediction utilizing the current methodology as opposed to the 

previously developed RPI as well as the maximum diameter criterion.   

A graphical depiction of the improvements in identifying AAAs who are at high risk of 

rupture is shown in Figure 7-4.  In this figure the Old RPI AAAs represent the rupture potential 

index as calculated using the previously derived isotropic constitutive relation for the AAA wall 
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stress as well as the previously developed noninvasive technique for wall strength.  These results 

suggest that both the maximum diameter and the currently developed RPI provide an improved 

prediction of rupture potential as compared to the previously defined RPI technique [40].  While 

this figure suggests an improvement of the current RPI over the maximum diameter criterion (p 

= 0.1 vs. p = 0.17), more AAAs are needed to accurately test this hypothesis.   

 

 

Figure 7-4:  Improvement in rupture potential prediction by using the currently developed 
RPI methodology (n=5 for non-ruptured, n=9 for ruptured) 



 

 

 

 

8.0 DISCUSSION 

 

8.1 RELATION TO PREVIOUS WORK 

 

The locally acting AAA wall stress divided by the local AAA wall strength, termed the rupture 

potential index (RPI), has been introduced as an alternative to the more commonly accepted 

maximum diameter criterion for predicting the rupture of abdominal aortic aneurysms.  

Improvements in the estimation of stress have been made including the replacement of a 

previously derived isotropic constitutive relationship for the AAA wall [38] by the anisotropic 

constitutive relationship derived (Chapter 3) and implemented (Chapter 5) in the current work.  

In addition, the statistical model for noninvasive estimation of AAA wall strength has been 

improved with several notable enhancements some of which include a larger construction data 

set (Section 6.2) and a CT-based method of local diameter measurement (Section 6.3.2.2).  The 

currently developed estimations of wall stress and strength were significantly different than the 

previously defined estimations (Section 5.3.3 and 6.4.6), suggesting that an improved rupture 

potential index may result.  In fact, when retrospectively comparing peak and mean RPI values 

between ruptured and non-ruptured AAAs, the currently developed RPI resulted in an improved 

ability to differentiate those AAAs which eventually rupture (Section 7.3.2, Figure 7-4).  The 

currently proposed technique for noninvasively predicting the rupture potential of a AAA may 

benefit the surgical decision making and clinical management of AAA patients. 
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The most commonly used criterion for AAA rupture prediction is the maximum diameter 

criterion, which is typically based on a cut-off value of 5.5cm.  Other parameters that have been 

proposed as potential predictors of AAA rupture include the AAA expansion rate [201, 210, 

211], wall stiffness [148], increase in intra-luminal thrombus (ILT) thickness [212], volume of 

ILT [203], wall tension [27], and peak AAA wall stress [33, 34].  All of these approaches are 

empirical in nature, and as such fail to take into account the physical aspects which control AAA 

development and rupture.  Described in this section are the most common criteria utilized for the 

clinical management of AAA and the shortcomings associated with their use. 

 

Maximum Diameter 

The maximum transverse diameter of an aneurysm has become the mainstay for determining a 

given AAAs risk of rupture.  The definition of this criterion for rupture prediction most likely 

stems from the Law of LaPlace, which states that the stress acting on a pressurized sphere is a 

function of its internal pressure, the radius of the sphere, and the thickness of the walls of the 

sphere.  Utilizing this method of stress estimation therefore assumes the AAA is spherical in 

nature.  Translating this technique to AAAs would suggest that the peak stress acting on a given 

aneurysm would: 

1) occur exclusively at the level of maximum diameter  

2) be the same for two AAAs of equal diameter but largely different local curvatures and 

3D tortuosity and 

3) require the direct measurement of the wall thickness within a AAA. 
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There have been several studies investigating the effect of non-spherical geometry on the peak 

wall stress in AAAs which show the peak stress may and often-times does not occur at the level 

of maximum diameter [28, 33-35, 55, 93-95, 111, 127, 146].  The presence of unique 

distributions of first and second principal curvatures within AAAs has been quantified in the 

literature [110, 147, 213]. These major and minor curvatures occurring regularly within AAA 

suggest may play a more prominent role on local wall stress than diameter alone.  The effect of 

wall thickness on the patient-specific wall stress has largely been ignored in the literature.  This 

primarily stems from the inability to noninvasively measure this quantity using the medical 

imaging techniques typically used in AAA patient management (CT, ultrasound).  A recent 

report has investigated the effect of localized changes in wall thickness on AAA wall stresses.  

This study implemented localized AAA wall thickness measurements taken from a fully intact 

ruptured AAA from autopsy into a patient-specific finite element analysis and found the peak 

stress correlated with the point of AAA rupture [109].  Clearly the ability to noninvasively 

predict the three dimensional distribution of AAA wall thickness would greatly improve the 

estimation of wall stress. 

 Perhaps the most convincing evidence that the maximum diameter of a AAA is unable to 

predict rupture is given in a study by Darling et al. [23].  They studied records from 24,000 

consecutive, non-specific autopsies performed over a 23-year period.  They found 473 non-

resected AAA, of which 118 were ruptured. Fifteen percent of AAA under 5 cm in diameter 

ruptured, and 66% of the aneurysms between 5 cm and 10 cm (including 54% of those between 

7.1 cm and 10 cm) never ruptured.  These findings question the maximum diameter criterion to 

assess AAA severity.  If a 5cm criterion were followed strictly for the 473 subjects with AAA 

studied by Darling and his associates, 7% (34/473) of them would have succumbed to rupture 
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before surgical repair was offered since their AAA was "too small" (<5cm).  Likewise, 25% 

(116/473) of them would have undergone major surgery, perhaps unnecessarily since their 

aneurysm may not have ruptured if left untreated. Darling et al.’s study has also recently been 

supported by Hall et al. who summarized a group of studies indicating that up to 23% of AAAs 

rupture at a diameter less than 5 cm [27].  All of these studies indicate that maximum diameter 

itself is unable to reliably predict AAA rupture. 

   

Wall Stress Alone 

There have been a few studies in the literature that have suggested the use of peak AAA wall 

stress alone as an improvement in AAA rupture prediction over the commonly accepted 

maximum diameter criterion.  Hall et al. [27] described the relationship between aortic wall 

stress predicted using the Law of LaPlace (i.e., based on maximum AAA diameter) and risk of 

AAA rupture.  In their study of 40 AAA patients, they suggested that there exists a threshold 

tension after which rupture was imminent.  However, it has been shown by our laboratory [28, 

55, 93, 111] and others [33-35] that the stresses acting on a AAA are not evenly distributed, and 

cannot be adequately described by the Law of LaPlace (see also previous section).  Fillinger et 

al. also found a significant increase in peak wall stress when comparing ruptured AAAs to those 

who remained quiescent [33].  A more recent study by Venkatasubramaniam et al. also found 

similar results, while also showing that the location of AAA rupture correlated with the location 

of peak wall stress [34].  It should be noted that both of these studies neglected the presence of 

mechanical anisotropy, utilizing the isotropic constitutive relationship developed previously in 

our laboratory [38].  Another investigation that has recently been added to the literature also 

investigates the use of stress prediction in AAA patient management [214].  
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While the peak stress is an important component in determining the mechanical failure of 

the AAA wall, this measure alone is unable to account for differences in wall strength from 

patient to patient as well as within a given patient.  Thubrikar recently reported the important 

conclusion that the yield stress within a given AAA varies spatially [54].  These results are in 

support of work done by Raghavan et al. who have also shown a 3D variation in wall strength in 

a AAA excised from autopsy [109].  The degradation of the AAA wall has also recently been 

shown to vary spatially within a given AAA [215], also suggesting that the wall strength varies 

as a function of location within a AAA.  All of these studies as well as recent work in our 

laboratory [216] provide evidence that the local wall strength is equally important in determining 

a given AAAs risk of rupture.  

 

Other Potential Predictors of Rupture 

The expansion rate (change in maximum diameter over time) has been suggested as a potential 

predictor of AAA rupture by a few researchers [201, 211, 217].  While it stands to reason that the 

risk of rupture of a given AAA is related to its growth rate, the use of a noninvasive predictor 

that is a function of time is troublesome.  This is primarily due to the fact that a patient’s 

maximum diameter history must be known in order to make a clinical assessment on rupture 

potential.  Since AAAs can often-times be asymptomatic, the diagnosis of a significant number 

of AAAs occurs as a result of investigating other comorbid conditions.  For these patients, no 

prior knowledge of AAA growth rate is known and therefore it is impossible to assess their 

rupture risk using expansion rate. 

 Another potential rupture risk indicator that has been proposed in the literature is the 

mechanical properties of the AAA wall as measured noninvasively using ultrasonography.  The 
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beta stiffness (β) and pressure-strain elastic modulus (Ep) are typically used in such studies to 

quantify the mechanical behavior of arterial tissue.  Sonesson et al. measured the beta stiffness of 

ruptured and non-ruptured AAAs and found their to be no correlation between beta stiffness in 

those AAAs who eventually ruptured as compared to those who remained quiescent [148].  

Wilson et al. investigated the relationship between AAA wall compliance, maximum diameter 

and growth rate in a series of patients with non-operated, asymptomatic AAAs [175].  Their 

results suggest that if aortic wall compliance is related to rupture then its use may augment the 

ability to effectively manage the AAA patient population.  The use of a noninvasive estimate of 

aneurysmal mechanical behavior may or may not prove to be statistically correlated with the 

rupture of AAAs.  From a mechanical point of view, however, the compliance, beta stiffness, and 

pressure-strain modulus fail to take into account the mechanical failure of the wall, which is a 

function of its strength and the stress acting on it.  That is not to say, however, that the patient-

specific mechanical behavior of a AAA does not effect its risk of rupture.  In fact, the currently 

developed RPI includes information regarding the anisotropic mechanical behavior of the AAA 

wall; however this is a population-wide model and is not patient-specific.  The use of 

noninvasive medical imaging techniques to determine the mechanical properties on a patient-

specific basis may vastly improve the prediction of stress in AAAs and therefore aide in rupture 

prediction. 

 The presence, amount, and location of intra-luminal thrombus have also been 

proposed as means of directing AAA patient management.  Stenbaek et al. [212] investigated the 

increase of relative ILT volume as a potential rupture risk predictor and concluded that a rapid 

increase may be a better predictor of AAA rupture than an increase in maximal diameter.  Hans 

et al. has also recently provided evidence that ILT is important in rupture prediction [203].  Their 
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study revealed that ruptured AAAs are larger in diameter and have a greater volume of thrombus 

compared with intact AAAs.  This difference disappeared, however, when the ILT volume was 

normalized to AAA volume.  This group also showed that the location (anterior and eccentric) of 

ILT between ruptured and non-ruptured AAAs did not significantly differ.  While the presence 

and location of ILT within an AAA may correlate with its peak stress, analyzing this parameter 

alone may lead to large errors in rupture assessment as this measure is not based on sound 

physical principles. 

The accurate prediction of the rupture potential of an AAA remains an unrequited clinical 

dilemma whose solution would prove beneficial to the management and treatment of AAA 

patients.  The current work focuses on a mechanically-based rupture potential index that may fill 

this vacancy.  The primary advantages of the currently developed RPI are that it 

• is patient-specific 

• is noninvasively attainable 

• varies with increases or decreases in AAA wall stress 

• includes the mechanical anisotropy known to be present in the AAA wall 

• varies with the strength of the AAA wall as determined from a patients medical history, 

sex, local ILT thickness, and local normalized diameter, and 

• is based on estimating those factors which influence the mechanical failure of the AAA 

wall.     

While the currently proposed RPI is encouraging in its promise, there remain several ways in 

which it could be improved, some of which are discussed in the following section. 
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8.2 LIMITATIONS AND FUTURE WORK 

 

8.2.1 Estimation of Wall Stress 
 

The estimation of AAA wall stress using the finite element method has made several incremental 

improvements over the past few decades.  Current computed-tomography imaging techniques 

have allowed the implementation of patient-specific geometry in AAA finite element 

simulations, which is thought to be an improvement over the Law of La Place [27] or other 

hypothetical geometries used for wall stress estimation [95].  Recent work in our laboratory has 

also shown the importance of including the ILT in AAA finite element simulations [55].  While 

the stresses estimated in the current work included the presence of the ILT as well as mechanical 

anisotropy, there are several key assumptions made here that leave room for improvement.  One 

of these assumptions is that the AAA wall acts as a mechanically homogenous material.  The 

atherosclerotic nature of aneurysm formation results in the calcification of the aneurysmal wall.  

The inclusion of this hardened plaque into finite element simulations of AAA and shown to alter 

the location and magnitude of wall stresses [98].  The presence and amount of calcification 

within the AAA wall should therefore be included in future stress simulations of AAA.   

Another assumption that requires future investigation is the boundary conditions applied 

to the AAA finite element simulations.  As stated in Section 5.2.1, the AAA is in a complex 

mechanical environment in the abdominal cavity including contact with the spinal column 

posteriorly as well as being tethered via arteries bifurcating from the AAA sac.  The influences 

of such mechanical boundaries were neglected in the current study and require further 

examination.   
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 The effect of the ILT on AAA wall stresses has been shown in our laboratory to effect the 

location and magnitude of the peak wall stresses acting on AAAs [55].  The ILT has also been 

investigated with respect to its role in the weakening of the wall [31], which may be a result of 

the hypoxia caused by the hindrance of luminal blood supply due to the ILT.  In terms of its 

mechanical significance, the ILT has been assumed to act as a purely solid continuum in the 

current work.  The large water content and microstructure of the ILT [59, 152] suggests that this 

assumption may be invalid.  In fact, Takagi et al. recently investigated the changes in pressure 

dissipation through the ILT thickness and found that the thrombus of an aneurysm does not 

significantly decrease the pressure on the aneurysmal wall [150].  Future work should investigate 

the porous nature of the ILT and how this may affect its mechanical and physiological role in the 

development and rupture of AAA. 

 

8.2.2 Estimation of Wall Strength 
 

The development of the noninvasive method for estimating AAA wall strength in the current 

work also has its limitations.  As with any statistical regression model, the application of any 

statistical regression model is limited by the range of independent variables used in its derivation 

(see Section 6.4.8).  The fact that only anterior samples of wall strength were used in the model 

derivation should also be kept in mind when utilizing this model.  This limitation was 

unavoidable in the current work as the procurement of specimens from three-dimensionally 

random was impossible. 

 Perhaps the most concerning limitation of the statistical model is the relatively small 

number (seven) of variables chosen as potential predictors of AAA wall strength.  In reality, 

there may be a very large number of factors that influence local wall strength.  The use of the 
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potential predictors chosen in this study was based primarily on the evidence provided for each 

in the literature as well as their noninvasive attainability.  For example, one variable that may be 

important in the degradation of extracellular proteins within the AAA wall is the local acting 

stresses [218-221].  Indeed, the local stresses acting at a specific location of the AAA wall is a 

major focus of the current work and has been proven to be noninvasively attainable.  In fact, 

plotting the peak wall strength (from uniaxial tests) versus wall stress (as determined from stress 

analyses and IMA correlation technique described in Section 6.3.2.2) suggests that their may be 

a relationship between these two variables (Figure 8-1).  Future studies should investigate this 

relationship further, being sure to test whether local wall stress should be included in the 

statistical model for wall strength.  Other variables that may prove to be important and should 

therefore be included in future studies are the presence and amount of calcification [98] as well 

as the volume of ILT [203, 212]. 

Figure 8-1:  Preliminary relationship between AAA wall strength and locally acting wall 
stress 
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8.2.3 RPI in the Clinic 
 

Of course, the fallacy of the maximum diameter criterion and its replacement by the RPI will 

only prove to be clinically meaningful with a prospective randomized study which displays an 

improved management of AAA patients using the RPI.  This may be a tricky study to perform, 

since surgeons will most likely not be able to create two experimental arms, basing a surgical 

decision primarily on either maximum diameter or RPI.  A more realistic study would be to 

retrospectively compare the RPI and rate of RPI with the maximum diameter and rate of 

maximum diameter for a randomized set of AAA patients.  Correlating the outcomes of these 

patients with the two proposed criteria would provide evidence for their comparison.  This has 

been performed in the current study, however the dataset was relatively small (n=5 non-ruptured, 

n=9 ruptured).  In addition, the RPI and maximum diameter were measured after the clinical 

outcome of the patient was determined. 

 

8.3 CONCLUSION 

 

The formation of aneurysm within the abdominal aorta presents a unique clinical dilemma, 

requiring surgeons to intervene when the risks of rupture outweigh those associated with 

repairing the AAA.  The current work describes the continued improvement of a rupture 

potential index which involves the noninvasive estimation of those factors influencing the 

mechanical failure of the AAA wall.  The clinical relevance of this method for rupture 

assessment has yet to be validated, however its success will undoubtedly aid surgeons in clinical 

decision making and AAA patient management. 
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APPENDIX A 
 
 
 
 

AVERAGING OF BIAXIAL TENSILE TESTING DATA 
 
 
 
 

% These files are called  (ave data.m, new_post_ave_data.m) 
clear; 
% this program requires there to be zeros so all cols are  
% the same length 
load l6a_2dir.txt 
data=l6a_2dir; 
 
output='constants.txt'; 
fod=fopen(output,'w'); 
 
% m is the # or rows, n is the # of cols 
[m,n]=size(data); 
flag=0; 
test=0; 
% these are column titles  
%fprintf(fod,'%s','Specimen'); 
%fprintf(fod,'  %s','a'); 
%fprintf(fod,'               %s\n','b'); 
 
for i=1:2:n 
    x=data(:,i); 
    y=data(:,i+1); 
    len=m; 
    for j=1:m 
        test=abs(x(j))+abs(y(j)); 
        if flag==1; 
            if test==0; 
                flag=0; 
                len=j-2; 
                test=1; 
%                j=m; 
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                break; 
            else 
                flag=0; 
            end 
        end 
        if test==0 
            flag=1; 
        end 
    end 
    newx=x(1:len); 
    newy=y(1:len); 
     
    ln_y=log(newy); 
    coeff=polyfit(newx,ln_y,1); 
    a=coeff(1); 
    b=coeff(2); 
    c=exp(b); 
     
    fprintf(fod,'%g',i); 
    fprintf(fod,'         %g',c); 
    fprintf(fod,'         %g\n',a); 
end 
fclose(fod); 
 
load constants.txt 
cterm=constants(:,2); 
expterm=constants(:,3); 
 
numsamples=length(cterm); 
 
temp=0.001:2:121; 
temp=temp'; 
 
colincr=1; 
for i=1:numsamples 
    %stuff(:,colincr)=temp;      %tension 
    stuff(:,colincr)=(1/expterm(i)).*log(temp./cterm(i)); %strain 
    colincr=colincr+1; 
end 
 
save ave_data_l6a_2.txt stuff -ASCII –TABS 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% First, combine all data for EITHER 1 or 2 directions so that they are consecutively next to 
eachother 
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% in the following order  l2a_i, l3a_i, l4d_i, l5a_i, l6a_i where i indicates the direction 
% For example, if you have 8 specimens, you should have a total of 8x5=40 columns of data 
% call this file comb_data_1.txt or comb_data_2.txt 
 
load comb_data_1.txt 
data=comb_data_1; 
 
 
% m is the # or rows, n is the # of cols 
[m,n]=size(data); 
numsp = n/5; 
thick=1.32; 
in_ten=0.001; 
ten_stp=2; 
 
% this section was added just before submission of the AAA paper 
% due to Dr. Sacks' request to use the sum of inverse of thicknesses as 
% opposed to an average thickness 
load specimen_thicknesses.txt 
thickdata=specimen_thicknesses; 
invthick=1./thickdata; 
newthick=(1/numsp)*(sum(invthick)); 
 
 
% lets split up each protocol..it'll be easier that way 
% the i index below references which protocol you are using 
 
for i=1:5 
    for j=1:m 
        for k=1:numsp 
            threeD_data1(i,j,k)=data(j,(i-1)*numsp+k); 
        end 
    end 
end 
 
for i=1:5 
    for j=1:m 
        aveE11(j,i)=mean(threeD_data1(i,j,:)); 
        stdev11(j,i)=(std(threeD_data1(i,j,:)))/sqrt(numsp); 
    end 
end 
 
for i=1:m 
    tension1(i) = in_ten; 
    in_ten=in_ten+2; 
end 
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aveE11(1,:)=0; 
stdev11(1,:)=0; 
tension1=tension1'; 
 
for j=1:5 
    for i=1:m 
S11(i,j)=(newthick.*tension1(i))*(1/(2*aveE11(j)+1)); 
    end 
end 
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
%   NOW FOR THE 2 DIRECTION 
 
 
load comb_data_2.txt 
data2=comb_data_2; 
 
% m is the # or rows, n is the # of cols 
[m,n]=size(data2); 
numsp = n/5; 
in_ten=0.001; 
ten_stp=2; 
 
% lets split up each protocol..it'll be easier that way 
% the k index below references which protocol you are using 
 
for i=1:5 
    for j=1:m 
        for k=1:numsp 
            threeD_data2(i,j,k)=data2(j,(i-1)*numsp+k); 
        end 
    end 
end 
 
for i=1:5 
    for j=1:m 
        aveE22(j,i)=mean(threeD_data2(i,j,:)); 
        stdev22(j,i)=(std(threeD_data2(i,j,:)))/sqrt(numsp); 
    end 
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end 
 
for i=1:m 
    tension2(i) = in_ten; 
    in_ten=in_ten+2; 
end 
 
aveE22(1,:)=0; 
stdev22(1,:)=0; 
tension2=tension2'; 
 
for j=1:5 
    for i=1:m 
S22(i,j)=(newthick.*tension2(i))*(1/(2*aveE22(j)+1)); 
    end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
% now ceate the fung 4 param stresses using the averaged Eij's 
% we need to create a strain space that will allow us to cover 
% the stress space adequately 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% 
 
modelE11=zeros(100,5); 
modelE22=zeros(100,5); 
 
modelE11(:,1)=linspace(0,max(aveE11(:,1))+0.009,100)'; 
modelE11(:,2)=linspace(0,max(aveE11(:,2))+0.009,100)'; 
modelE11(:,3)=linspace(0,max(aveE11(:,3))+0.009,100)'; 
modelE11(:,4)=linspace(0,max(aveE11(:,4))+0.009,100)'; 
modelE11(:,5)=linspace(0,max(aveE11(:,5))+0.009,100)'; 
modelE22(:,1)=linspace(0,max(aveE22(:,1))+0.009,100)'; 
modelE22(:,2)=linspace(0,max(aveE22(:,2))+0.009,100)'; 
modelE22(:,3)=linspace(0,max(aveE22(:,3))+0.009,100)'; 
modelE22(:,4)=linspace(0,max(aveE22(:,4))+0.009,100)'; 
modelE22(:,5)=linspace(0,max(aveE22(:,5))+0.009,100)'; 
 
c=0.621; 
a1=142.859; 
a2=127.222; 
a3=40.136; 
 
Q=a1*modelE11.^2+a2*modelE22.^2+2*a3.*modelE11.*modelE22; 
modelS11=(c.*exp(Q).*(a1.*modelE11+a3.*modelE22)); 
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modelS22=(c.*exp(Q).*(a1.*modelE22+a3.*modelE11)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  now for some plots of this data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
figure 
subplot(1,2,1); 
plot(aveE11(:,1),S11(:,1),'k.'); 
axis([0 max(max(max(aveE11,aveE22)))+0.01 0 max(max(max(S11,S22)))+10]); 
hold on; 
plot(aveE11(:,2),S11(:,2),'k.'); 
hold on; 

plot(aveE22(:,4),S22(:,4),'b.'); 

plot(aveE11(:,3),S11(:,3),'k.'); 
hold on; 
plot(aveE11(:,4),S11(:,4),'k.'); 
hold on; 
plot(aveE11(:,5),S11(:,5),'k.'); 
hold on; 
plot(modelE11(:,1),modelS11(:,1),'-k'); 
hold on; 
plot(modelE11(:,2),modelS11(:,2),'-k'); 
hold on; 
plot(modelE11(:,3),modelS11(:,3),'-k'); 
hold on; 
plot(modelE11(:,4),modelS11(:,4),'-k'); 
hold on; 
plot(modelE11(:,5),modelS11(:,5),'-k'); 
title('S11 vs E11') 
xlabel('E11') 
ylabel('S11') 
 
 
 
subplot(1,2,2); 
plot(aveE22(:,1),S22(:,1),'b.'); 
axis([0 max(max(max(aveE11,aveE22)))+0.01 0 max(max(max(S11,S22)))+10]); 
hold on; 
plot(aveE22(:,2),S22(:,2),'b.'); 
hold on; 
plot(aveE22(:,3),S22(:,3),'b.'); 
hold on; 

hold on; 
plot(aveE22(:,5),S22(:,5),'b.'); 
hold on; 
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plot(modelE22(:,1),modelS22(:,1),'-k'); 
hold on; 
plot(modelE22(:,2),modelS22(:,2),'-k'); 
hold on; 
plot(modelE22(:,3),modelS22(:,3),'-k'); 
hold on; 
plot(modelE22(:,4),modelS22(:,4),'-k'); 
hold on; 
plot(modelE22(:,5),modelS22(:,5),'-k'); 
title('S22 vs E22') 
xlabel('E22') 
ylabel('S22') 
 
% figure 
% plot(aveE11(:,1),tension1(:,1),'r.'); 
% hold on; 
% plot(aveE11(:,2),tension1(:,1),'r.'); 
% hold on; 
% plot(aveE11(:,3),tension1(:,1),'r.'); 
% hold on; 
% plot(aveE11(:,4),tension1(:,1),'r.'); 
% hold on; 
% plot(aveE11(:,5),tension1(:,1),'r.'); 
 
% figure 
% plot(aveE22(:,1),tension2(:,1),'g.'); 
% hold on; 
% plot(aveE22(:,2),tension2(:,1),'g.'); 
% hold on; 
% plot(aveE22(:,3),tension2(:,1),'g.'); 
% hold on; 
% plot(aveE22(:,4),tension2(:,1),'g.'); 
% hold on; 
% plot(aveE22(:,5),tension2(:,1),'g.'); 
 
 
 
clear i; 
clear j; 
clear k; 
clear n; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%% 
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%  NOW TO OUTPUT A FILE FOR SIGMASTAT FUNG 4 REGRESSION FIT 
 
for i=1:(m*10) 
    for j=1:4 
        output(i,j)=0; 
    end 
end 
 
 
 
for i=1:m 
    output(i,1)=1; 
end 
 
for i=m+1:2*m 
    output(i,1)=2; 
end 
 
for i=2*m+1:3*m 
    output(i,1)=1; 
end 
 
for i=3*m+1:4*m 
    output(i,1)=2; 
end 
 
for i=4*m+1:5*m 
    output(i,1)=1; 
end 
 
for i=5*m+1:6*m 
    output(i,1)=2; 
end 
 
for i=6*m+1:7*m 
    output(i,1)=1; 
end 
 
for i=7*m+1:8*m 
    output(i,1)=2; 
end 
 
for i=8*m+1:9*m 
    output(i,1)=1; 
end 
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for i=9*m+1:10*m 
    output(i,1)=2; 
end 
 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% 
% put stresses in column 4 
 
for i=1:m 
    output(i,2)=aveE11(i,1); 
    output(i,3)=aveE22(i,1); 
    output(i,4)=S11(i,1); 
 
end 
 
for i=m+1:2*m 
    output(i,2)=aveE11(i-(1*m),1); 
    output(i,3)=aveE22(i-(1*m),1); 
    output(i,4)=S22(i-(1*m),1); 
end 
 
for i=2*m+1:3*m 
    output(i,2)=aveE11(i-(2*m),2); 
    output(i,3)=aveE22(i-(2*m),2); 
    output(i,4)=S11(i-(2*m),2); 

 
for i=3*m+1:4*m 
    output(i,2)=aveE11(i-(3*m),2); 
    output(i,3)=aveE22(i-(3*m),2); 
    output(i,4)=S22(i-(3*m),2); 
end 
 
for i=4*m+1:5*m 
    output(i,2)=aveE11(i-(4*m),3); 
    output(i,3)=aveE22(i-(4*m),3); 
    output(i,4)=S11(i-(4*m),3); 
end 
 
for i=5*m+1:6*m 
    output(i,2)=aveE11(i-(5*m),3); 
    output(i,3)=aveE22(i-(5*m),3); 
    output(i,4)=S22(i-(5*m),3); 
end 
 
for i=6*m+1:7*m 
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    output(i,2)=aveE11(i-(6*m),4); 
    output(i,3)=aveE22(i-(6*m),4); 
    output(i,4)=S11(i-(6*m),4); 
end 
 
for i=7*m+1:8*m 
    output(i,2)=aveE11(i-(7*m),4); 
    output(i,3)=aveE22(i-(7*m),4); 
    output(i,4)=S22(i-(7*m),4); 
end 

        MTMlong(j)=(S22(m,3)-S22((m-10),3))/(threeD_data2(3,m,j)-threeD_data2(3,m-10,j)); 

 
for i=8*m+1:9*m 
    output(i,2)=aveE11(i-(8*m),5); 
    output(i,3)=aveE22(i-(8*m),5); 
    output(i,4)=S11(i-(8*m),5); 
end 
 
for i=9*m+1:10*m 
    output(i,2)=aveE11(i-(9*m),5); 
    output(i,3)=aveE22(i-(9*m),5); 
    output(i,4)=S22(i-(9*m),5); 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  now lets calculate the MTM for each direction for the equibiaxial protocol 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
for j=1:numsp 
        MTMcirc(j)=(S11(m,3)-S11((m-10),3))/(threeD_data1(3,m,j)-threeD_data1(3,m-10,j)); 

        MTMcirc=MTMcirc'; 
        MTMlong=MTMlong'; 
end 
     
save presigmastat.txt output -ASCII -TABS 
save aveE11.txt aveE11 -ASCII -TABS 
save aveE22.txt aveE22 -ASCII -TABS 
save S11.txt S11 -ASCII -TABS 
save S22.txt S22 -ASCII -TABS 
save stdev11.txt stdev11 -ASCII -TABS 
save stdev22.txt stdev22 -ASCII -TABS 
save modelS11.txt modelS11 -ASCII -TABS 
save modelS22.txt modelS22 -ASCII -TABS 
save modelE11.txt modelE11 -ASCII -TABS 
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save modelE22.txt modelE22 -ASCII -TABS 
save MTMcirc.txt MTMcirc -ASCII -TABS 
save MTMlong.txt MTMlong -ASCII -TABS 
 
clear Q; 
clear a1; 
clear a2; 
clear a3; 
clear c; 
clear i; 
clear j; 
clear m; 
clear in_ten; 
clear numsp; 
clear ten_stp; 
clear thick; 
clear data; 
clear data2; 
clear tension1; 
clear tension2;
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APPENDIX B 
 
 
 
 

PREPROCESSING OF 2D SLICE DATA 
 
 
 

 
% This file is called recon3D.txt and is written in Mathematica 
 
FExt=".txt";FileOut="Out.txt";Spc="  ";  
 
MainDat=ReadList[FileInput,String];  
StrLngMin3=StringLength[MainDat[[1]]]-4;  
LastStr[J_,N_]:=StringTake[MainDat[[J]],-N];  
MainPath=StringTake[FileInput,StringLength[FileInput]-9]; 
InpFil=StringTake[MainDat[[1]],StrLngMin3];  
FPath=StringJoin[MainPath,InpFil]; 
 
 
NL=ToExpression[LastStr[1,3]];  
Z={ToExpression[LastStr[2,3]]};  
Do[Z=AppendTo[Z,ToExpression[LastStr[J,3]]],  
 {J,3,NL+1}];  
 
NZ=Quotient[NL,3]; 
RZ=Mod[NL,3]; 
 
If[Z[[1]]==0,NumChar=".000",  
 {Num=N[Z[[1]]/1000,3];  
 If[StringLength[ToString[Num]]==4,  
 NumChar=StringJoin[StringTake[ToString[N[Z[[1]]/1000,  
  3]],-3],"0"],  
 NumChar=StringTake[ToString[N[Z[[1]]/1000,3]],-4]]}];  
FName={StringJoin[FPath,NumChar]}; 
Do[{If[Z[[J]]==0,NumChar=".000",  
 {Num=N[Z[[J]]/1000,3]; 
 If[StringLength[ToString[Num]]==4,  
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 NumChar=StringJoin[StringTake[ToString[N[Z[[J]]/1000,  
  3]],-3],"0"], 
  {If[StringLength[ToString[Num]]==3, 
  NumChar=StringJoin[StringTake[ToString[ 
  N[Z[[J]]/1000,3]],-2],"00"],  
 NumChar=StringTake[ToString[N[Z[[J]]/1000,3]],-4]]}]}];  
 FName=AppendTo[FName,StringJoin[FPath,NumChar]]},  
{J,2,NL}];  
 
TL=0; 
Do[   
Lst[J]=ReadList[FName[[J]],Number,RecordLists->True];   
 EL[J]=Length[Lst[J]];TL=TL+EL[J],{J,1,NL}];   
 
Do[Lst[J]=Append[Lst[J],Lst[J][[1]]],{J,1,NL}];   
 
Do[{AA=0;   
Do[{DX=(Lst[J][[L+1]][[1]]-Lst[J][[L]][[1]])*MulFac;   
 DY=(Lst[J][[L+1]][[2]]+Lst[J][[L]][[2]])*MulFac;   
 AA=AA+0.5*DX*DY},   
{L,1,EL[J]}];   
DA[J]=Abs[AA]},{J,1,NL}]  
 
Vol:=0;  
Do[Vol+=DA[J],{J,1,NL}];  
 
Coords=Table[{0.0,0.0,0.0},[11]];  
 
K=1;FileXYZ=OpenWrite[StringJoin[FPath,FileOut],FormatType->   
 OutputForm];   
Do[{AX=0;AY=0;   
Do[{Coords[[K]]=Append[Table[Lst[J][[L]]]*MulFac,-0.1*Z[[J]]];   
 DX=(Lst[J][[L+1]][[1]]-Lst[J][[L]][[1]])*MulFac;   
 DY=(Lst[J][[L+1]][[2]]-Lst[J][[L]][[2]])*MulFac;   
 TX=(Lst[J][[L+1]][[1]]+Lst[J][[L]][[1]])*MulFac;   
 TY=(Lst[J][[L+1]][[2]]+Lst[J][[L]][[2]])*MulFac;   
 AX=AX+TX*DX*TY;AY=AY+TY*DY*TX;   
 Write[FileXYZ,Coords[[K]][[1]],"  ",Coords[[K]][[2]],"  ",   
 Coords[[K]][[3]]];K=K+1},   
{L,1,EL[J]}];   
Write[FileXYZ,Coords[[K-EL[J]]][[1]],"  ",   
 Coords[[K-EL[J]]][[2]],"  ",Coords[[K-EL[J]]][[3]]];   
CX[J]=Abs[AX/(4.0*DA[J])];   
CY[J]=Abs[AY/(4.0*DA[J])]},   
{J,1,NL}];Close[FileXYZ];   
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Do[Pol[J]=Table[{0,0},{L,1,EL[J]}],{J,1,NL}]   
 
Do[Pol[J]=Sort[Table[{Which[   
 (Lst[J][[L]][[1]]*MulFac-CX[J])>=0 &&   
 (Lst[J][[L]][[2]]*MulFac-CY[J])>=0,   
  90.-ArcTan[(Lst[J][[L]][[1]]*MulFac-CX[J]),   
  (Lst[J][[L]][[2]]*MulFac-CY[J])]*180./N[Pi],   
 (Lst[J][[L]][[1]]*MulFac-CX[J])>=0 &&   
 (Lst[J][[L]][[2]]*MulFac-CY[J])<0,   
  90.-ArcTan[(Lst[J][[L]][[1]]*MulFac-CX[J]),   
  (Lst[J][[L]][[2]]*MulFac-CY[J])]*180./N[Pi],   
 (Lst[J][[L]][[1]]*MulFac-CX[J])<=0 &&   
 (Lst[J][[L]][[2]]*MulFac-CY[J])>=0,   
  450.-ArcTan[(Lst[J][[L]][[1]]*MulFac-CX[J]),   
  (Lst[J][[L]][[2]]*MulFac-CY[J])]*180./N[Pi],   
 (Lst[J][[L]][[1]]*MulFac-CX[J])<=0 &&   
 (Lst[J][[L]][[2]]*MulFac-CY[J])<0,   
  90.-ArcTan[(Lst[J][[L]][[1]]*MulFac-CX[J]),   
  (Lst[J][[L]][[2]]*MulFac-CY[J])]*180./N[Pi]],   
Sqrt[(Lst[J][[L]][[1]]*MulFac-CX[J])^2+   
 (Lst[J][[L]][[2]]*MulFac-CY[J])^2]},   
{L,1,EL[J]}]],{J,1,NL}]   
 
Do[Bfr[J]=ListPlot[Append[Lst[J]*MulFac,{CX[J],   
 CY[J]}],PlotRange->Automatic,Ticks->None,AspectRatio->1,   
 DisplayFunction->Identity,PlotJoined->True],{J,1,NL}];   
 
DT=5;K=1;RTheta=Table[{0,0},{360/DT*NL}];   
Do[{TX=0;L=1;   
 While[TX<360 && L<EL[J],   
 {T1=Pol[J][[L]][[1]];T2=Pol[J][[L+1]][[1]];   
 R1=Pol[J][[L]][[2]];R2=Pol[J][[L+1]][[2]]; 
 Which[TX<=T1,   
  {T1=Pol[J][[EL[J]]][[1]]-360;R1=Pol[J][[EL[J]]][[2]]; 
  T2=Pol[J][[L]][[1]]; R2=Pol[J][[1]][[2]];   
  RTheta[[K]]={TX,(TX-T1)/(T2-T1)*(R2-R1)+R1};   
  K=K+1;TX=TX+DT},   
 TX>T1 && TX<=T2,   
  {TM=T1+0.5*(T1+T2);RM=(R1+R2)/2;   
  RTheta[[K]]={TX,(TX-T1)/(T2-T1)*(R2-R1)+R1};   
  K=K+1;TX=TX+DT},   
 TX>T2,L=L+1]}];   
 While[TX<360,   
 {T1=Pol[J][[EL[J]]][[1]];T2=Pol[J][[1]][[1]];   
 R1=Pol[J][[EL[J]]][[2]];R2=Pol[J][[1]][[2]];   
 TM=T1+0.5*(T1+T2);RM=(R1+R2)/2;   
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 RTheta[[K]]={TX,(TX-T1)/(T2-T1)*(R2-R1)+R1};   
 K=K+1; 
 TX=TX+DT}]},{J,1,NL}];   
 
Do[RTB[J]=ListPlot[Pol[J],PlotJoined->True,Ticks->None,   
 DisplayFunction->Identity,PlotRange->Automatic,   
 GridLines->Automatic],{J,1,NL}];   
 
Do[RTA[J]=ListPlot[Table[RTheta[[(J-1)*360/DT+L]],   
 {L,1,360/DT}],Ticks->None,PlotJoined->True,   
 DisplayFunction->Identity,PlotRange->Automatic,   
 GridLines->Automatic],{J,1,NL}];   
 
 
FileEvn=OpenWrite[StringJoin[FPath,"XYZ.txt"],FormatType->   
 OutputForm];   
XYZ=Table[{0,0},{360/DT*NL}];K=1;   
Do[ 
Do[{XYZ[[K]]={CX[J]+RTheta[[K]][[2]]*Sin[RTheta[[K]][[1]]* 
 N[Pi]/180.],   
 CY[J]+RTheta[[K]][[2]]*Cos[RTheta[[K]][[1]]*N[Pi]/180], 
 -.1*Z[[J]]};   
 Write[FileEvn,XYZ[[K]][[1]],"  ",XYZ[[K]][[2]],"  ",   
  slicethick*XYZ[[K]][[3]]];   
 K=K+1},{L,1,360/DT}], 
{J,1,NL}];Close[FileEvn];   
 
TT=0; 
Do[Aft[J]=ListPlot[Table[{XYZ[[(J-1)*360/DT+K]][[1]], 
 XYZ[[(J-1)*360/DT+K]][[2]]},{K,1,360/DT}],DisplayFunction->Identity, 
 AspectRatio->1,PlotJoined->True,PlotRange->Automatic, 
 Ticks->None], 
{J,1,NL}]; 
 
FileXYZ=OpenRead[StringJoin[FPath,FileOut]];   
aneu=ReadList[FileXYZ,Point[{Number,Number,Number}],   
 RecordLists -> True];Close[FileXYZ];   
 
FileEvn=OpenRead[StringJoin[FPath,"XYZ.txt"]];   
even=ReadList[FileEvn,Number,RecordLists -> True];Close[FileEvn];   
 
v1=Show[Graphics3D[Line[even],Boxed->True, Axes->True,  AxesLabel->{x,y,z}],  
 ViewPoint->{-3,-5,5},DisplayFunction->Identity];   
v2=Show[Graphics3D[Line[even],Boxed->True, Axes->True,  AxesLabel->{x,y,z}],  
 ViewPoint->{5,-3,5},DisplayFunction->Identity];   
v3=Show[Graphics3D[Line[even],Boxed->True, Axes->True,  AxesLabel->{x,y,z}],  
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 ViewPoint-> {-3,5,5},DisplayFunction->Identity];   
 
vx=Show[Graphics3D[Line[even],Boxed->True, Axes->True,  AxesLabel->{x,y,z}],  
 ViewPoint->{0,-5,0},DisplayFunction->Identity];   
vy=Show[Graphics3D[Line[even],Boxed->True, Axes->True,  AxesLabel->{x,y,z}],  
 ViewPoint-> {-5,0,0},DisplayFunction->Identity];   
 
Needs["Graphics`Animation`"]  
 
Do[vk[J]=Show[Graphics3D[Line[even],SphericalRegion->True,  
 Boxed->True, Axes->True,  AxesLabel->{x,y,z}],ViewPoint->{J-3,-3,2},  
 DisplayFunction->$DisplayFunction],{J,0,6}]; 
Do[vk[J+6]=Show[Graphics3D[Line[even],SphericalRegion->True, 
 Boxed->True, Axes->True,  AxesLabel->{x,y,z}],ViewPoint->{3,J-3,2},  
 DisplayFunction->$DisplayFunction],{J,1,6}]; 
Do[vk[J+12]=Show[Graphics3D[Line[even],SphericalRegion->True,  
 Boxed->True, Axes->True,  AxesLabel->{x,y,z}],ViewPoint->{3-J,3,2},  
 DisplayFunction->$DisplayFunction],{J,1,6}]; 
Do[vk[J+18]=Show[Graphics3D[Line[even],SphericalRegion->True,  
 Boxed->True, Axes->True,  AxesLabel->{x,y,z}],ViewPoint->{-3,3-J,2},  
 DisplayFunction->$DisplayFunction],{J,1,5}]; 
 
Show[Graphics3D[Line[even],Boxed->True, Axes->True,  AxesLabel->{x,y,z}],  
 ViewPoint->{5,0,0}];  
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APPENDIX C 
 
 
 
 

ILD TO 3D SMOOTHING MATLAB FUNCTION 
 
 
 
 
function idl2dsmith = idl2dsmith(n1,n2,fname); 
 
%FUNCTION idl2dsmith creates input.dat file in a specified format 
% as well as calling Mathematica to run recon2.nb.  It then creates 
% the .dat file needed by david smith programs 
% 
% Syntax: function idl2dsmith[c] = idl2dsmith(n1,n2,fname); 
% 
% INPUTS:n1,n2 are start and end indexes of file extensions 
%        fname = filename as a string (single quotes) without the extension (usually 'Draw0' etc) 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
% this portion of the code creates an input.dat file 
% suitable to be used by the Mathematica program recon2.nb 
fid = fopen('input.dat','wt'); 
if n1==0 
nslices=n2-n1; 
else 
nslices=n2-n1+1; 
end 
if nslices<10 
fmt = '%s%s  %i\n'; 
elseif nslices>9 & nslices<100 
fmt = '%s%s %i\n'; 
end 
c= n2-n1+1; 
fprintf(fid,fmt,fname,',',c); 
fmt2 = '%s%s  %i\n'; 
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fmt3 = '%s%s %i\n'; 
for i = n1:n2, 
    if i<10 
    fprintf(fid,fmt2,fname,',',i); 
    else 
    fprintf(fid,fmt3,fname,',',i); 
    end 
end 
fclose(fid) 
 
% RUN MATHEMATICA 
system('C:\Program Files\Wolfram Research\Mathematica\5.0\Mathematica.exe'); 
 
pause 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
% now we need to read in the Draw0XYZ.txt file and edit 
% it to a .dat file that can be used by David Smiths programs 
s=pwd; 
cd(s); 
xyz=load(strcat(fname,'XYZ.txt')); 
name=input('Please enter the name of the file -> dsmith (.dat assumed,8 CHARS OR LESS): 
','s'); 
fid5=fopen(strcat(name,'.dat'),'w'); 
fprintf(fid5,'%s       %i    %s\n','1',length(xyz),'1'); 
fprintf(fid5,'%s       %s\n','1','1'); 
for i=1:length(xyz) 
    fprintf(fid5,'%6.4f  %6.4f  %4.2f\n',xyz(i,1),xyz(i,2),xyz(i,3)); 
end 
fclose(fid5); 
% 
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APPENDIX D 
 
 
 
 

3D SMOOTHING TO IGES CREATION MATLAB SCRIPT 
 
 
 
 
function dsmith2iges = dsmith2iges(fname2); 
 
%FUNCTION dsmith2iges reads in the .plt file from dsmith 
% and creates .gambit files used by IGES.exe.  IGES.exe is 
% called at the end of this program 
% 
% Syntax: function dsmith2iges[c] = idl2dsmith(fname2); 
% 
% INPUTS:fname2 = filename of .plt file (.plt assumed, e.g. 'wall' etc) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% read in the plt file 
fid1=fopen(strcat(fname2,'.plt')); 
a=fscanf(fid1,'%6s',40); 
size_a=size(a); 
fclose(fid1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%determine where the N= portion of the file is 
for i=1:size_a(2) 
    if (a(i)=='N') & (a(i+1)=='=') 
        begofnum=i+2; 
    else 
        jon=7; 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% determine the number of nodes in the file 
for i=begofnum:begofnum+6 
    if a(i)==',' 
       lengthofnumnodes=i-begofnum; 
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       comma=i; 
   end 
end 
nodes_str=a(begofnum); 
for j=begofnum:comma-2 
   nodes_str=strcat(nodes_str,a(j+1));  
end 
nodes=str2num(nodes_str); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% determine the number of elements in the file 
if a(comma+3)==',' 
    comma2=comma+3; 
elseif a(comma+4)==',' 
    comma2=comma+4; 
elseif a(comma+5)==',' 
    comma2=comma+5; 
elseif a(comma+6)==',' 
    comma2=comma+6; 
elseif a(comma+7)==',' 
    comma2=comma+7; 
end 
begofel=comma+3; 
el_str=a(begofel); 
for j=begofel:comma2-2 
   el_str=strcat(el_str,a(j+1));  
end 
elements=str2num(el_str); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% open the entire file  
fid3=fopen(strcat(fname2,'.plt')); 
all_data=fscanf(fid3,'%6s'); 
endofheader=comma2+21; 
newb=all_data(endofheader+1:length(all_data)); 
clear all_data; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
% find the end of the data we are interested in 
all_es=findstr('e',newb); 
lasteindex=max(all_es); 
clear all_es; 
endofdata=lasteindex+3; 
just_data=newb(1:endofdata); 
clear newb; 
i=1; 
z=0; 
while i<length(just_data)-5 
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if just_data(i)=='-' 
i=i+13; 
z=z+1; 
else 
i=i+12; 
z=z+1; 
end 
end 
array=zeros(1,z); 
i=1; 
z=1; 
while i<length(just_data)-5 
if just_data(i)=='-' 
array(z)=str2num(just_data(i:i+12)); 
i=i+13; 
z=z+1; 
else 
array(z)=str2num(just_data(i:i+11)); 
i=i+12; 
z=z+1; 
end 
end 
 
array2=zeros(length(array)/11,11); 
for i=1:length(array2) 
for j=1:11 
array2(i,j)=array((i-1)*11+j); 
end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% load wall_plt.txt; 
% data=wall_plt; 
 file_size=size(array2); 
% xyz_data=zeros(file_size(1),3); 
xyz_data=array2(:,1:3); 
tmp=xyz_data(1,3); 
 
% find out how many pts are in each slice (npps) 
for i=2:150 
if xyz_data(i,3)~=tmp 
npps=i-1; 
break 
else 
jon=7; 
end 
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end 
 
% find out how many slices there are 
file_size=size(array2); 
num_slices=file_size(1)/npps; 
 
% open all the files for writing 
for i=1:num_slices 
    title=strcat(fname2,num2str(i),'.gambit'); 
    fid2=fopen(title,'w'); 
    for j=1:npps 
        fprintf(fid2,'%s','vertex create coordinates  '); 
        fprintf(fid2,'%6.3f  %6.3f  %6.3f\n',xyz_data(i*npps-npps+j,1),xyz_data(i*npps-
npps+j,2),xyz_data(i*npps-npps+j,3)); 
    end 
        fclose(fid2); 
end 
 
system('C:\Documents and Settings\Jonathan\Desktop\recon\IGES.exe');
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APPENDIX E 
 
 
 
 

CREATION OF ABAQUS INPUT FILE FROM TRUE GRID FILE 
 
 
 
 
%TruGrid_2_ABAQUS_with_ILT.m  
close all 
clear all 
clc 
% read in the data file from True Grid 
fname1=input('Please enter the name of the WALL mesh file from TrueGrid including the 
extension: ','s'); 
data=textread(fname1,'%s','delimiter',','); 
data1=char(data); 
clear data; 
 
% Find the indexes of important keywords 
k=1; 
j=1; 
for i=1:length(data1) 
    if data1(i,1:5)=='*NODE' 
        nodeindex=i+2; 
    end 
    if data1(i,1:6)=='*SHELL' 
        endnodeindex=i-1; 
    end 
    if data1(i,1:8)=='*ELEMENT' 
        elementindex=i+3; 
    end 
    if data1(i,1:6)=='*ELSET' 
        elsetindex(k)=i; 
        k=k+1; 
    end 
    if data1(i,1:5)=='*NSET' 
        nsetindex(j)=i; 
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        j=j+1; 
    end 
end 
numelsets=k-1; 
numnsets=j-1; 
 
% find endelementindex, the index corresonding to the end of the connectivity 
if numelsets==0 & numnsets==0 
    endelementindex=length(data1); 
elseif numelsets>=1 & numnsets==0 
    endelementindex=elsetindex(1)-1; 
elseif numelsets==0 & numnsets>=1 
    endelementindex=nsetindex(1)-1; 
else 
    firstsetindex=min([elsetindex(1) nsetindex(1)]); 
    endelementindex=firstsetindex-1; 
end         
 
% here we will create elset1, which is the first elset. 
k=1; 
for i=elsetindex(1)+2:1:length(data1) 
    if (data1(i,1:3)=='   ') 
        jon=5; 
 else 
        data2(k,:)=data1(i,:); 
        elset1(k,:)=str2num(data2(k,:)); 
        k=k+1; 
    end 
end 
clear data2; 
clear jon; 
 
% First, lets find the total number of nodes and then save the node numbers to nodenums 
% Then lets get the x,y, and z values 
k=1; 
for i=nodeindex:4:endnodeindex 
    nodenums(k)=str2num(data1(i,:)); 
    x(k)=str2num(data1(i+1,:)); 
    y(k)=str2num(data1(i+2,:)); 
    z(k)=str2num(data1(i+3,:)); 
    k=k+1; 
end 
 
% First, lets find the total number of elements and then save the element numbers to elnums 
% Then, lets get the nodes in locations one through four of the wall connectivity 
numels=(endelementindex-elementindex+1)/5; 

260 



 

k=1; 
for i=elementindex:5:endelementindex 
    elnums(k)=str2num(data1(i,:)); 
    one_nodes(k)=str2num(data1(i+1,:)); 
    two_nodes(k)=str2num(data1(i+2,:)); 
    three_nodes(k)=str2num(data1(i+3,:)); 
    four_nodes(k)=str2num(data1(i+4,:)); 
    k=k+1; 
end 
 
% Concatenate the nodes and xyz coordinates into one array called nodes_xyz 
nodes_xyz=[nodenums; x; y; z]; 
nodes_xyz=nodes_xyz'; 
 
% Concatenate the connectivity into one array called connectivity 
connectivity=[elnums; one_nodes; two_nodes; three_nodes; four_nodes]; 
connectivity=connectivity'; 
 
% Lets first ascertain how many divisions there are in the theta direction 
% The easiest way to do this is to isolate all the points at one end of the 
% AAA.  
bottomz=min(nodes_xyz(:,4)); 
topz=max(nodes_xyz(:,4)); 
lengthz=topz-bottomz; 
numnodesbottom=length(find(nodes_xyz(:,4)<=bottomz+0.005 & nodes_xyz(:,4)>=bottomz-
0.005));%CHANGED!! 
numnodestop=length(find(nodes_xyz(:,4)<=topz+0.005 & nodes_xyz(:,4)>=topz-
0.005));%CHANGED!! 
numzslices=numels/numnodesbottom+1; 
numzsegments=numzslices-1; 
zslicedist=lengthz/(numzsegments); 
 
sorted_xyz=sortrows(nodes_xyz,4); 
% now change to descending instead of ascending 
j=1; 
for i=length(sorted_xyz):-1:1 
sorted_xyz2(j,:)=sorted_xyz(i,:); 
j=j+1; 
end 
sorted_xyz=sorted_xyz2; 
clear sorted_xyz2; 
 
for i=1:numzslices 
sort_label(i,1:numnodesbottom)=sorted_xyz(numnodesbottom*(i-1)+1:numnodesbottom*i,1)'; 
end 
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for i=1:numzslices 
slices(:,:,i)=nodes_xyz(sort_label(i,:),:); 
end 
 
% Now lets calculate the center of mass of each slice 
 
for i=1:numzslices 
    %x=mean(slices(:,2,i)); 
    x=min(slices(:,2,i))+((max(slices(:,2,i))-min(slices(:,2,i)))/2); 
    %y=mean(slices(:,3,i)); 
    y=min(slices(:,3,i))+((max(slices(:,3,i))-min(slices(:,3,i)))/2); 
    z=mean(slices(:,4,i)); 
    centerpt(i,:)=[x y z]; 
end 
 
% Here is the part where I fit two fourth order poly's to x 
% versus z and y versus z.... 
xparams=polyfit(centerpt(:,3),centerpt(:,1),3); 
yparams=polyfit(centerpt(:,3),centerpt(:,2),3); 
x=polyval(xparams,centerpt(:,3)); 
y=polyval(yparams,centerpt(:,3)); 
 
% This calculates meanx, meany, and meanz, each 1D vectors of length numels that contain 
% the mean location of each element 
for i=1:numels 
    meanx(i)= (nodes_xyz(connectivity(i,2),2) + nodes_xyz(connectivity(i,3),2) + ... 
    nodes_xyz(connectivity(i,4),2) + nodes_xyz(connectivity(i,5),2))/4; 
 
    meany(i)= (nodes_xyz(connectivity(i,2),3) + nodes_xyz(connectivity(i,3),3) + ... 
    nodes_xyz(connectivity(i,4),3) + nodes_xyz(connectivity(i,5),3))/4; 
 
    meanz(i)= (nodes_xyz(connectivity(i,2),4) + nodes_xyz(connectivity(i,3),4) + ... 
    nodes_xyz(connectivity(i,4),4) + nodes_xyz(connectivity(i,5),4))/4; 
end 
 
% Now lets get the element sets for each z region we are interested in 
orient_elsets=zeros(numzsegments,500); 
k=1; 
for i=1:numzsegments 
    index=find(meanz<=(topz-(i-1)*zslicedist) & meanz>=(topz-(i)*zslicedist)); 
    orient_elsets(k,1:length(index))=index; 
    k=k+1; 
end 
 
%Plot the points of the mesh along with the centerline calculated above 
% for i=1:numzslices 
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% zvector(:,i)=bottomz+(i-1)*zslicedist.*(ones(length(slices),1)); 
% end 
% for i=1:numzslices 
% plot3(slices(:,2,i),slices(:,3,i),slices(:,4,i),'k.'); 
% hold on 
% end 
% hold on 
% plot3(x,y,centerpt(:,3),'-b'); 
% hold on 
% plot3(centerpt(:,1),centerpt(:,2),centerpt(:,3),'or'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
%       LOAD IN THE ILT FILE AND PREPARE IT FOR PRINTING OUT 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% 
 
% read in the ilt data file from True Grid 
fname2=input('Please enter the name of the ILT mesh file from TrueGrid including the 
extension: ','s'); 
iltdata=textread(fname2,'%s','delimiter',','); 
iltdata1=char(iltdata); 
clear iltdata; 
 
% Find nodeindex, the index of the first node in the node list 
% Find endnodeindex, the index corresponding to the end of the nodelist. 
% Find elementindex, the index of the first element in the element list 
% Lets find out if there are any element sets in the file (*ELSET) 
% Lets find out if there are any node sets sets in the file (*NSET) 
k=1; 
j=1; 
for i=1:length(iltdata1) 
    if iltdata1(i,1:5)=='*NODE' 
        iltnodeindex=i+2; 
    end 
    if iltdata1(i,1:4)=='****' 
        iltendnodeindex=i-1; 
    end 
    if iltdata1(i,1:8)=='*ELEMENT' 
        iltelementindex=i+3; 
    end 
    if iltdata1(i,1:6)=='*ELSET' 
        iltelsetindex(k)=i; 
        k=k+1; 
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    end 
    if iltdata1(i,1:5)=='*NSET' 
        iltnsetindex(j)=i; 
        j=j+1; 
    end 
end 
iltnumelsets=k-1; 
iltnumnsets=j-1; 
 
% find endelementindex, the index corresonding to the end of the connectivity 
if iltnumelsets==0 & iltnumnsets==0 
    iltendelementindex=length(iltdata1); 
elseif iltnumelsets>=1 & iltnumnsets==0 
    iltendelementindex=iltelsetindex(1)-1; 
elseif iltnumelsets==0 & iltnumnsets>=1 
    iltendelementindex=iltnsetindex(1)-1; 
else 
    iltfirstsetindex=min([iltelsetindex(1) iltnsetindex(1)]); 
    iltendelementindex=iltfirstsetindex-1; 
end         
 
% First, lets find the total number of nodes and then save the node numbers to nodenums 
% Then, lets get the x,y, and z values 
k=1; 
iltnumnodes=(iltendnodeindex-iltnodeindex+1)/4; 
for i=iltnodeindex:4:iltendnodeindex 
    iltnodenums(k)=str2num(iltdata1(i,:)); 
    iltx(k)=str2num(iltdata1(i+1,:)); 
    ilty(k)=str2num(iltdata1(i+2,:)); 
    iltz(k)=str2num(iltdata1(i+3,:)); 
    k=k+1; 
end 
 
% First, lets find the total number of elements and then save the element numbers to elnums. 
% Then less get the nodes in locations one through eight of ilt connectivity 
k=1; 
iltnumels=(iltendelementindex-iltelementindex+1)/9; 
for i=iltelementindex:9:iltendelementindex 
    iltelnums(k)=str2num(iltdata1(i,:)); 
    iltone_nodes(k)=str2num(iltdata1(i+1,:)); 
    ilttwo_nodes(k)=str2num(iltdata1(i+2,:)); 
    iltthree_nodes(k)=str2num(iltdata1(i+3,:)); 
    iltfour_nodes(k)=str2num(iltdata1(i+4,:)); 
    iltfive_nodes(k)=str2num(iltdata1(i+5,:)); 
    iltsix_nodes(k)=str2num(iltdata1(i+6,:)); 
    iltseven_nodes(k)=str2num(iltdata1(i+7,:)); 
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    ilteight_nodes(k)=str2num(iltdata1(i+8,:)); 
    k=k+1; 
end 
 
% Concatenate the nodes and xyz coordinates into one array called nodes_xyz 
iltnodes_xyz=[iltnodenums; iltx; ilty; iltz]; 
iltnodes_xyz=iltnodes_xyz'; 
 
% Concatenate the connectivity into one array called connectivity 
iltconnectivity=[iltelnums; iltone_nodes; ilttwo_nodes; iltthree_nodes; iltfour_nodes; 
iltfive_nodes; ... 
        iltsix_nodes; iltseven_nodes; ilteight_nodes]; 
iltconnectivity=iltconnectivity'; 
 
% This section finds the element set corresponding to the wall with no ILT 
% It first finds the outside elements of the ILT, then transforms these into 
% a cylindrical coordinate system, assigning a value of theta to each of these 
% elements.  then finds elements of the wall corresponding to this value of theta 
% this portion assumes that there are 4 elements through the thickess of the ILT. 
erase=input('Please enter the number of elements through the thickness of the ILT: ','s'); 
elthick=str2num(erase); 
 
iltbottomz=min(iltnodes_xyz(:,4)); 
ilttopz=max(iltnodes_xyz(:,4)); 
iltinels=iltconnectivity(elthick:elthick:length(iltconnectivity),:); 
iltoutels=iltconnectivity(1:elthick:length(iltconnectivity),:); 
% %  
% %  
% This section isolates the nodes on the inside of the ilt 
isubset1=horzcat(iltnodes_xyz(iltinels(:,2),1), iltnodes_xyz(iltinels(:,2),2), 
iltnodes_xyz(iltinels(:,2),3), iltnodes_xyz(iltinels(:,2),4)); 
isubset2=horzcat(iltnodes_xyz(iltinels(:,5:6),1), iltnodes_xyz(iltinels(:,5:6),2), 
iltnodes_xyz(iltinels(:,5:6),3), iltnodes_xyz(iltinels(:,5:6),4)); 
isubset3=horzcat(iltnodes_xyz(iltinels(:,9),1), iltnodes_xyz(iltinels(:,9),2), 
iltnodes_xyz(iltinels(:,9),3), iltnodes_xyz(iltinels(:,9),4)); 
erase=union(isubset1,isubset2,'rows'); 
ilt_xyz_inside_nodes=union(erase,isubset3,'rows'); 
clear isubset* erase 
% plot3(ilt_xyz_inside_nodes(:,2),ilt_xyz_inside_nodes(:,3),ilt_xyz_inside_nodes(:,4),'r*'); 
% hold on; 
% 
plot3(iltnodes_xyz(iltinels(:,2:9),2),iltnodes_xyz(iltinels(:,2:9),3),iltnodes_xyz(iltinels(:,2:9),4),'b
o') 
 
% this then isolates the middle slice of the inside of the ilt and calculates the center of mass 
mid=ilttopz-abs((iltbottomz-ilttopz)/2); 
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middleiltslice=find(ilt_xyz_inside_nodes(:,4)<mid+0.1 & ilt_xyz_inside_nodes(:,4)>mid-0.1); 
middleiltslice=ilt_xyz_inside_nodes(middleiltslice,:); 
ilt_centerx=mean(middleiltslice(:,2)); 
ilt_centery=mean(middleiltslice(:,3)); 
ilt_centerz=mean(middleiltslice(:,4)); 
%clear ilt_xyz_inside_nodes; 
% plot3(middleiltslice(:,2),middleiltslice(:,3),middleiltslice(:,4),'r*') 
% hold on; 
% plot3(ilt_centerx,ilt_centery,ilt_centerz,'bo'); 
 
 
osubset1=horzcat(iltnodes_xyz(iltoutels(:,3:4),1), iltnodes_xyz(iltoutels(:,3:4),2), 
iltnodes_xyz(iltoutels(:,3:4),3), iltnodes_xyz(iltoutels(:,3:4),4)); 
osubset2=horzcat(iltnodes_xyz(iltoutels(:,7:8),1), iltnodes_xyz(iltoutels(:,7:8),2), 
iltnodes_xyz(iltoutels(:,7:8),3), iltnodes_xyz(iltoutels(:,7:8),4)); 
ilt_xyz_outside_nodes=union(osubset1,osubset2,'rows'); 
clear osub*; 
%  
 
% Now lets get the element sets for each z region we are interested in 
num_sections=input('How many sections would you like to use to section the ILT (50 for full 
length ILT)?: ','s'); 
num_sections=str2num(num_sections); 
 
iltzslicedist=abs(iltbottomz-ilttopz)/num_sections; 
iltnumzsegments=num_sections; 
 
temp=find(nodes_xyz(:,4)>ilttopz+0.01); 
temp2=nodes_xyz(temp,:); 
 
% This portion is added because the case where the ilt is completely cylindrical yet does not 
% cover the entire wall was not covered before.  The code from the next line to the line reading 
% xyz2=[]; was inserted afterwards to take this into account 
erase3=input('Is the ILT perfectly tubular with a flat top and bottom? (Y=1, N=0): ','s'); 
check3=str2num(erase3); 
if check3==1 
    check1=0; 
    erase4=input('Does the wall extend above (1) or below (2) the ILT or both (3)? ','s'); 
    check4=str2num(erase4); 
    if check4==3 

        for g=1:length(nodes3) 

        t3=find(nodes_xyz(:,4)<iltbottomz-0.05 | nodes_xyz(:,4)>ilttopz+0.05); 
        t3=nodes_xyz(t3,:); 
        nodes3=t3(:,1); 
        wall_no_ilt_elset2=[]; 

            wall_no_ilt_elset=find(connectivity(:,2)==nodes3(g) | connectivity(:,3)==nodes3(g) | ... 
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                connectivity(:,4)==nodes3(g) | connectivity(:,5)==nodes3(g)); 
            aa=connectivity(wall_no_ilt_elset,1); 
            wall_no_ilt_elset2=[wall_no_ilt_elset2;aa]; 
            clear aa 
        end 
        wall_no_ilt_elset2=unique(wall_no_ilt_elset2); 
    elseif check4==1 
        t3=find(nodes_xyz(:,4)>ilttopz+0.05); 
        t3=nodes_xyz(t3,:); 
        nodes3=t3(:,1); 
        wall_no_ilt_elset2=[]; 
        for g=1:length(nodes3) 
            wall_no_ilt_elset=find(connectivity(:,2)==nodes3(g) | connectivity(:,3)==nodes3(g) | ... 
                connectivity(:,4)==nodes3(g) | connectivity(:,5)==nodes3(g)); 
            aa=connectivity(wall_no_ilt_elset,1); 
            wall_no_ilt_elset2=[wall_no_ilt_elset2;aa]; 
            clear aa 
        end 
        wall_no_ilt_elset2=unique(wall_no_ilt_elset2); 

erase2=input('Does the ILT cover the ENTIRE aneurysm? (Y=1, N=0): ','s'); 

    else 
        t3=find(nodes_xyz(:,4)<ilttopz-0.05); 
        t3=nodes_xyz(t3,:); 
        nodes3=t3(:,1); 
        wall_no_ilt_elset2=[]; 
        for g=1:length(nodes3) 
            wall_no_ilt_elset=find(connectivity(:,2)==nodes3(g) | connectivity(:,3)==nodes3(g) | ... 
                connectivity(:,4)==nodes3(g) | connectivity(:,5)==nodes3(g)); 
            aa=connectivity(wall_no_ilt_elset,1); 
            wall_no_ilt_elset2=[wall_no_ilt_elset2;aa]; 
            clear aa 
        end 
        wall_no_ilt_elset2=unique(wall_no_ilt_elset2); 
    end 
else 
 
xyz2=[]; 
wall_sec3=temp2; 
clear temp temp2 
ilt_sec3=[]; 

check1=str2num(erase2); 
 
if check1==1 
    donothing=1;  
else 
    for i=1:iltnumzsegments 
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        % isolate ilt nodes within z range 
        ilt_sec=find((ilt_xyz_outside_nodes(:,4)<ilttopz-(i-1)*iltzslicedist+iltzslicedist) & 
(ilt_xyz_outside_nodes(:,4)>ilttopz-(i-1)*iltzslicedist-iltzslicedist)); 
        ilt_sec=ilt_xyz_outside_nodes(ilt_sec,:); 
        wall_sec=find((nodes_xyz(:,4)<ilttopz-(i-1)*iltzslicedist+iltzslicedist) & 
(nodes_xyz(:,4)>ilttopz-(i-1)*iltzslicedist-iltzslicedist)); 
        wall_sec=nodes_xyz(wall_sec,:); 
     
        % in this section lets locate the elset corresponding to wall with no ilt 
        meanofslice=[mean(ilt_sec(:,2));mean(ilt_sec(:,3));mean(ilt_sec(:,4))]; 
        X=meanofslice(1)+zeros(length(wall_sec),1); 
        Y=meanofslice(2)+zeros(length(wall_sec),1); 
        Z=meanofslice(3)+zeros(length(wall_sec),1); 
        nothing=zeros(length(wall_sec),1); 
        array=horzcat(nothing,X,Y,Z); 
        wall_sec2=wall_sec-array; 
        X=meanofslice(1)+zeros(length(ilt_sec),1); 
        Y=meanofslice(2)+zeros(length(ilt_sec),1); 
        Z=meanofslice(3)+zeros(length(ilt_sec),1); 
        nothing=zeros(length(ilt_sec),1); 
        array=horzcat(nothing,X,Y,Z); 
        ilt_sec2=ilt_sec-array; 
     
        [th,r,z]=cart2pol(ilt_sec2(:,2),ilt_sec2(:,3),ilt_sec2(:,4)); 
        ilt_pol=horzcat(ilt_sec(:,1),th,r,z); 
        [wth,wr,wz]=cart2pol(wall_sec2(:,2),wall_sec2(:,3),wall_sec2(:,4)); 
        wall_pol=horzcat(wall_sec(:,1),wth,wr,wz); 
        % EVERYTHING IS GOOD TO HERE... 
     
        % the resulting thetas range from -3.142 rad to +3.142 rad 
        % basically there are four cases.  case 1 is the ilt encompasses all values of theta. 
        % case 2 and 3 are where either one end or the other of the ilt stops at pos or neg 
        % 3.142.  case 4 is where the max and min ilt fall somewhere in the interior of the range 
        %of theta 
        margin=3.0; 
        thetadiff=0.3; 
        if(min(ilt_pol(:,2))<-margin & max(ilt_pol(:,2))>margin) 
            %aaaa=1; 
            b=ilt_pol(:,2); 
            b2=sort(b); 
            for j=1:length(b2)-1 
                if(abs(b2(j+1)-b2(j))>thetadiff) 
                    %bbbb=1; 
                    bottom_no_ilt_bound=b2(j); 
                    top_no_ilt_bound=b2(j+1); 
                    answer=6; 
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                    break 
                else 
                    %cccc=1; 
                    answer=5; 
                end 
            end 
            if(answer==5) 
                %dddd=1; 
                wall_no_ilt=0; %the ilt covers the whole wall 
            else  %isolate the wall where there is no ilt 
                %eeee=1; 
                temp=find((wall_pol(:,2)>bottom_no_ilt_bound+0.11) & 
wall_pol(:,2)<top_no_ilt_bound-0.11); 
                wall_no_ilt=wall_pol(temp,:); 
                clear check 
                check=wall_pol(temp,:); 
            end 
        elseif(min(ilt_pol(:,2))<-margin & max(ilt_pol(:,2))<margin) 
            %ffff=1; 
            temp=find((wall_pol(:,2)<3.142) & wall_pol(:,2)>max(ilt_pol(:,2))+0.11); 
            wall_no_ilt=wall_pol(temp,:); 
        elseif(min(ilt_pol(:,2))>-margin & max(ilt_pol(:,2))>margin) 
            %gggg=1; 
            temp=find((wall_pol(:,2)>-3.142) & wall_pol(:,2)<min(ilt_pol(:,2))+0.11); 
            wall_no_ilt=wall_pol(temp,:); 
        else 
            %hhhh=1; 
            temp=find((wall_pol(:,2)<min(ilt_pol(:,2)-0.11) & wall_pol(:,2)>-3.142) | 
(wall_pol(:,2)>max(ilt_pol(:,2))+0.11 & wall_pol(:,2)<3.142)); 
            wall_no_ilt=wall_pol(temp,:); 
        end 
     
        if (wall_no_ilt~=0) 
            %iiii=1; 
            [noiltx,noilty,noiltz]=pol2cart(wall_no_ilt(:,2),wall_no_ilt(:,3),wall_no_ilt(:,4)); 
            noiltx=noiltx+meanofslice(1); 
            noilty=noilty+meanofslice(2); 
            noiltz=noiltz+meanofslice(3); 
            xyz=horzcat(wall_pol(temp),noiltx,noilty,noiltz); %IM NOT SURE TEMP IS WHAT I 
WANT HERE!!!???? 
            xyz2=[xyz2;xyz]; 
            wall_sec3=[wall_sec3;wall_sec]; 
            ilt_sec3=[ilt_sec3;ilt_sec]; 
            if (i==iltnumzsegments) 
                %kkkk=1; 
                t=find(nodes_xyz(:,4)<iltbottomz-0.01); 
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                t=nodes_xyz(t,:); 
                wall_sec3=[wall_sec3;t]; 
                clear t; 
            end          
            %clear noiltx noilty noiltz temp ilt_pol wall_pol 
            h=plot3(xyz2(:,2),xyz2(:,3),xyz2(:,4),'g*'); 
            hold on; 
            plot3(wall_sec3(:,2),wall_sec3(:,3),wall_sec3(:,4),'bo') 

    t=nodes_xyz(t,:); 

            hold on; 
            plot3(ilt_sec3(:,2),ilt_sec3(:,3),ilt_sec3(:,4),'r+') 
            axis equal; 
            saveas(h,strrep('fig$','$',int2str(i)),'bmp'); 
            pause; 
            close all; 
        end 
    end 
    t=find(nodes_xyz(:,4)<iltbottomz-0.05 | nodes_xyz(:,4)>ilttopz+0.05); 

    wall_no_ilt=[xyz2;t]; 
    nodes=wall_no_ilt(:,1); 
    wall_no_ilt_elset2=[]; 
    for g=1:length(nodes) 
        wall_no_ilt_elset=find(connectivity(:,2)==nodes(g) | connectivity(:,3)==nodes(g) | ... 
            connectivity(:,4)==nodes(g) | connectivity(:,5)==nodes(g)); 
        aa=connectivity(wall_no_ilt_elset,1); 
        wall_no_ilt_elset2=[wall_no_ilt_elset2;aa]; 
        clear aa 
    end 
    wall_no_ilt_elset2=unique(wall_no_ilt_elset2); 
end 
 
 
end 
 
%  
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
% PRINT OUT THE ABAQUS FILE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
outputstring=fname1(1:length(fname1)-4); 
outputstring=strcat(outputstring,'.inp'); 
fid=fopen(outputstring,'w'); 
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%PRINT THE FILE HEADER 
fprintf(fid,'%s\n%s\n%s\n%s\n%s\n%s\n%s\n','*Heading','*Preprint,echo=NO,model=NO,histor
y=NO,contact=NO',... 
    '*Part, name=THRINST','*End Part','*Part, name=WALLINST','*End Part','*Assembly, 
name=Assembly'); 
fprintf(fid,'%s\n%s\n','*Instance, name=WALLINST, part=WALLINST','*Node'); 
 
%PRINT THE WALL NODES 
for i=1:length(nodes_xyz) 
fprintf(fid,'%i%s%6.3f%s%6.3f%s%6.3f\n', nodes_xyz(i,1), ', ', nodes_xyz(i,2),', ', 
nodes_xyz(i,3),', ', nodes_xyz(i,4)); 
end 
 
%PRINT THE WALL ELEMENTS 
fprintf(fid,'%s\n','*Element, type=S4R'); 
for i=1:length(connectivity) 
fprintf(fid,'%i%s%i%s%i%s%i%s%i\n', connectivity(i,1), ', ', connectivity(i,2),', ', 
connectivity(i,3),', ', ... 
    connectivity(i,4),', ',connectivity(i,5)); 

        fprintf(fid,'\n'); 

end 
 
%PRINT THE ELSETS 
fprintf(fid,'%s\n%i%s%i%s%i\n','*Elset, elset=WALLSHELL, internal, generate',1,', ',numels,', 
',1); 
 
%PRINT THE ELSETS FOR USE IN THE *SHELL SECTION ASSIGNMENT 
[a b]=size(orient_elsets); 
for i=1:a 
    if i>1 

    end 
    fprintf(fid,'%s\n',strrep('*Elset, elset=wall$, internal, instance=WALLINST','$',num2str(i))); 
    for j=1:max(find(orient_elsets(i,:))) 
        if rem(j,15)==0 
            fprintf(fid,'\n'); 
        end 
        if orient_elsets(i,j)~=0 
            fprintf(fid,'%i%s ',orient_elsets(i,j),','); 
        else 
            break 
        end 
    end 
end 
fprintf(fid,'\n') 
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%PRINT THE SHELL SECTION FOR THE WALL AND THE TRANSVERSE SHEAR 
STIFFNESS LINES 
for i=1:numzslices-1 
    fprintf(fid,'%s%s%s%s\n%f%s%i\n',strrep('*Shell Section, elset=wall$,','$',num2str(i)),' 
material=wall',', ',... 
        strrep('orientation=cylcoord$','$',num2str(i)),0.13,', ',5); 
    fprintf(fid,'%s\n%s\n','*Transverse shear stiffness','500, 500, 500'); 
end 

fprintf(fid,'%s\n %f%s %f%s %f%s %f%s %f%s %f\n %i %s %i\n',... 

 
 
%PRINT THE ORIENTATION DEFINITIONS 
for i=1:numzslices-1 

strrep('*Orientation, name=cylcoord$, definition=coordinates, 
system=cylindrical','$',num2str(i)),x(i),',',y(i),',',... 
centerpt(i,3),',',x(i+1),',',y(i+1),',',centerpt(i+1,3),1,',',0); 
end 
 
fprintf(fid,'%s\n','*End Instance'); 
 
% PRINT OUT THE INSTANCE (NODES AND CONNECTIVITY) OF THE ILT 
fprintf(fid,'%s\n%s\n','*Instance, name=THRINST, part=THRINST','*Node'); 
 
%PRINT THE ILT NODES 
for i=1:length(iltnodes_xyz) 
fprintf(fid,'%i%s%6.3f%s%6.3f%s%6.3f\n', iltnodes_xyz(i,1), ', ', iltnodes_xyz(i,2),', ', 
iltnodes_xyz(i,3),', ', iltnodes_xyz(i,4)); 
end 
 
%PRINT THE ILT ELEMENTS 
fprintf(fid,'%s\n','*Element, type=C3D8H'); 
for i=1:length(iltconnectivity) 
fprintf(fid,'%i%s%i%s%i%s%i%s%i%s%i%s%i%s%i%s%i\n', iltconnectivity(i,1), ', ', 
iltconnectivity(i,2),', ', iltconnectivity(i,3),', ', ... 
    iltconnectivity(i,4),', ',iltconnectivity(i,5),', ',iltconnectivity(i,6),', ',iltconnectivity(i,7),', 
',iltconnectivity(i,8)... 
    ,', ',iltconnectivity(i,9)); 
end 
 
fprintf(fid,'%s\n','*Elset, elset=ilt, internal, generate'); 
fprintf(fid,'%s%i%s\n','1, ',iltnumels,', 1 '); 
fprintf(fid,'%s\n','*Solid Section, elset=ilt, material=ILT'); 
fprintf(fid,'%s\n','1.,'); 
 
fprintf(fid,'%s\n','*End Instance'); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

for i=1:length(outside_ilt) 

fprintf(fid,'%s\n','*Surface, type=ELEMENT, name=outside_ilt_surface'); 

    fprintf(fid,'%s\n','*Elset, elset=wallnoilt_elset, internal, instance=WALLINST'); 

    fprintf(fid,'%s\n','*Surface, type=ELEMENT, name=wallnoilt_surface'); 

end 

% ENTER ELSETS AND SURFACES FOR TIE CONTACT HERE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
fprintf(fid,'%s\n','*Elset, elset=walltie, internal, instance=WALLINST, generate'); 
fprintf(fid,'%s%i%s\n','1, ',numels,', 1 '); 
fprintf(fid,'%s\n','*Surface, type=ELEMENT, name=insideofwall'); 
fprintf(fid,'%s\n','walltie, SNEG'); 
 
fprintf(fid,'%s\n','*Elset, elset=outside_ilt_elset, internal, instance=THRINST'); 
outside_ilt=iltoutels(:,1); 

    if mod(i,10)==0 
        fprintf(fid,'\n'); 
    end 
    fprintf(fid,'%i%s ',outside_ilt(i),','); 
end 
fprintf(fid,'\n'); 
 

fprintf(fid,'%s\n','outside_ilt_elset, S6'); 
 
if check1==0 

    for i=1:length(wall_no_ilt_elset2) 
        if mod(i,10)==0 
            fprintf(fid,'\n'); 
        end 
        fprintf(fid,'%i%s ',wall_no_ilt_elset2(i),','); 
    end 
    fprintf(fid,'\n'); 

    fprintf(fid,'%s\n','wallnoilt_elset, SNEG'); 
end 
 
 
inside_ilt=iltinels(:,1); 
fprintf(fid,'%s\n','*Elset, elset=inside_ilt, internal, instance=THRINST'); 
for i=1:length(inside_ilt) 
    if mod(i,10)==0 
        fprintf(fid,'\n'); 
    end 
    fprintf(fid,'%i%s ',inside_ilt(i),','); 

fprintf(fid,'\n'); 
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fprintf(fid,'%s\n','*Surface, type=ELEMENT, name=inside_ilt_surface'); 
fprintf(fid,'%s\n','inside_ilt, S4'); 
 
bottomnset=find(nodes_xyz(:,4)>=bottomz-0.001 & 
nodes_xyz(:,4)<=bottomz+0.001);%CHANGED!! 
fprintf(fid,'%s\n','*Nset, nset=bottomnodeset, instance=WALLINST'); 
for i=1:length(bottomnset) 
    if mod(i,10)==0 
        fprintf(fid,'\n'); 
    end 
    fprintf(fid,'%i%s ',bottomnset(i),','); 
end 
fprintf(fid,'\n'); 
 
topnset=find(nodes_xyz(:,4)>=topz-0.001 & nodes_xyz(:,4)<=topz+0.001);%CHANGED!! 
fprintf(fid,'%s\n','*Nset, nset=topnodeset, instance=WALLINST'); 
for i=1:length(topnset) 
    if mod(i,10)==0 
        fprintf(fid,'\n'); 
    end 
    fprintf(fid,'%i%s ',topnset(i),','); 

fprintf(fid,'%s\n','*Material, name=ILT'); 

end 
fprintf(fid,'\n'); 
 
fprintf(fid,'%s\n','*Tie, name=tiecontact, adjust=yes, position tolerance=0'); 
fprintf(fid,'%s\n','outside_ilt_surface, insideofwall'); 
 
 
fprintf(fid,'%s\n','*End Assembly'); 
fprintf(fid,'%s\n','***********************************************'); 
 
% MATERIAL DEFINITIONS 
fprintf(fid,'%s\n','*Material, name=wall'); 
fprintf(fid,'%s\n','*User Material, constants=8'); 
fprintf(fid,'%s\n','0.014, 477, 416.4, 408.3, 100., 40, 40, 40.'); 
fprintf(fid,'%s\n','***********************************************'); 
 

fprintf(fid,'%s\n','*Hyperelastic, n=2'); 
fprintf(fid,'%s\n','0., 2.804,    0.,    0., 2.858,    0.,    0.'); 
fprintf(fid,'%s\n','***********************************************'); 
 
% STEP DEFINITION 
fprintf(fid,'%s\n','*Step, name=Step1, nlgeom=YES'); 
fprintf(fid,'%s\n','*Static'); 
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fprintf(fid,'%s\n','0.01, 1., 1e-06, 0.4'); 
fprintf(fid,'%s\n','***********************************************'); 

fprintf(fid,'%s\n','bottomnodeset, 1, 3'); 

fprintf(fid,'%s\n','***********************************************'); 

fprintf(fid,'%s\n','COORD, U'); 

fprintf(fid,'%s\n','3'); 

clear sort_label sorted_xyz  

fclose(fid); 

 
% BOUNDARY CONDITIONS 
fprintf(fid,'%s\n','*Boundary'); 

fprintf(fid,'%s\n','topnodeset, 1, 3'); 

 
% LOADS 
if check1==0 
    fprintf(fid,'%s\n','*Dsload'); 
    fprintf(fid,'%s\n','wallnoilt_surface, P, 1.6'); 
end 
fprintf(fid,'%s\n','*Dsload'); 
fprintf(fid,'%s\n','inside_ilt_surface, P, 1.6'); 
 
% OUTPUT REQUESTS 
fprintf(fid,'%s\n','*Restart, write, frequency=1'); 
fprintf(fid,'%s\n','*Output, field'); 
fprintf(fid,'%s\n','*Node Output'); 

fprintf(fid,'%s\n','*Element Output'); 

fprintf(fid,'%s\n','EE, S'); 
fprintf(fid,'%s\n','*Output, history, variable=PRESELECT'); 
fprintf(fid,'%s\n','*El Print, freq=999999'); 
fprintf(fid,'%s\n','*Node Print, freq=999999'); 
 
fprintf(fid,'%s\n','*CONTROLS, PARAMETERS=TIME INCREMENTATION'); 
fprintf(fid,'%s\n','7, 10, 9, 25, 10, 7, 12, 8, 6, 3'); 
fprintf(fid,'%s\n','0.10, 0.5, 0.75, 0.85, 0.25, 0.75, 1.75, 0.75'); 
fprintf(fid,'%s\n','0.8, 1.5, 1.25, 2, 0.95, 0.1, 1, 0.95'); 
 
fprintf(fid,'%s\n','*End Step'); 
 
clear data1 iltdata1 numelsets meanx numels meany meanz iltthree_nodes 
clear iltseven_nodes iltone_nodes ilttwo_nodes iltfour_nodes iltfive_nodes iltsix_nodes 
clear x y z iltx ilty iltz slices subset* xparams yparams ilteight_nodes iltnodenums 

 

fprintf('%s','ALL DONE!'); 
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APPENDIX F 

 

 

EXERPTS FROM A SAMPLE INPUT FILE 

 
 

2, 17, 18, 34, 33 

 

 

 
 

*Heading 
*Preprint,echo=NO,model=NO,history=NO,contact=NO 
*Part, name=THRINST 
*End Part 
*Part, name=WALLINST 
*End Part 
*Assembly, name=Assembly 
*Instance, name=WALLINST, part=WALLINST 
*Node 
1, 21.510, 21.964,  0.000 
2, 21.620, 22.258, -0.296 
3, 21.736, 22.593, -0.543 
4, 21.858, 22.949, -0.757 
5, 21.984, 23.310, -0.957 
... 
... 
... 
2010, 22.742, 24.273, -9.893 
2011, 22.649, 24.094, -10.112 
2012, 22.555, 23.909, -10.325 
2013, 22.461, 23.726, -10.537 
2014, 22.370, 23.546, -10.750 
*Element, type=S4R 
1, 1, 2, 18, 17 

3, 33, 34, 50, 49 
4, 49, 50, 66, 65 
5, 65, 66, 82, 81 
6, 81, 82, 98, 97 
... 
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... 

... 
1954, 1936, 1937, 1948, 1947 
1955, 1947, 1948, 1959, 1958 
1956, 1958, 1959, 1970, 1969 

... 

1957, 1969, 1970, 1981, 1980 
1958, 1980, 1981, 1992, 1991 
1959, 1991, 1992, 2003, 2002 
1960, 2002, 2003, 2014, 2013 
1961, 2013, 2014, 416, 415 
*Elset, elset=WALLSHELL, internal, generate 
1, 1961, 1 
*Elset, elset=wall1, internal, instance=WALLINST 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,  
519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 926, 927, 928, 929,  
930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 1444, 1445, 1446, 1447, 1448,  
1449, 1450, 1451, 1452, 1453, 1454, 1455, 1456, 1457,  
*Elset, elset=wall2, internal, instance=WALLINST 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,  
530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 940, 941, 942, 943,  
944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 1458, 1459, 1460, 1461, 1462,  
1463, 1464, 1465, 1466, 1467, 1468, 1469, 1470, 1471,  
... 
... 
... 
*Elset, elset=wall37, internal, instance=WALLINST 
505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518,  
915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 1430, 1431, 1432, 1433,  
1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1948, 1949, 1950, 1951, 1952,  
1953, 1954, 1955, 1956, 1957, 1958, 1959, 1960, 1961,  
*Shell Section, elset=wall1, material=wall, orientation=cylcoord1 
0.130000, 5 
*Transverse shear stiffness 
100,100,100 
*Shell Section, elset=wall2, material=wall, orientation=cylcoord2 
0.130000, 5 
... 
... 

*Shell Section, elset=wall37, material=wall, orientation=cylcoord37 
0.130000, 5 
*Transverse shear stiffness 
100,100,100 
*Orientation, name=cylcoord1, definition=coordinates, system=cylindrical 
 21.300244, 20.654832, -0.000000, 21.452739, 20.980064, -0.288287 
 1 0 
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*Orientation, name=cylcoord2, definition=coordinates, system=cylindrical 
 21.452739, 20.980064, -0.288287, 21.584740, 21.260887, -0.558157 
 1 0 
... 
... 
... 
*Orientation, name=cylcoord37, definition=coordinates, system=cylindrical 
 21.748014, 22.038184, -10.491524, 21.696035, 21.974308, -10.750000 
 1 0 
*End Instance 
*Instance, name=THRINST, part=THRINST 
*Node 
1, 24.512, 24.084, -2.202 
2, 24.487, 24.342, -2.270 
3, 24.458, 24.597, -2.350 
4, 24.428, 24.846, -2.445 
5, 24.397, 25.087, -2.558 
... 
... 
... 
1222, 21.861, 19.688, -4.667 
1223, 22.092, 19.660, -4.854 
1224, 22.358, 19.658, -4.987 
*Element, type=C3D8H 
1, 2, 32, 37, 7, 1, 31, 36, 6 
2, 32, 62, 67, 37, 31, 61, 66, 36 
3, 7, 37, 42, 12, 6, 36, 41, 11 
4, 37, 67, 72, 42, 36, 66, 71, 41 
... 
... 
... 
733, 1168, 1192, 1196, 1172, 1167, 1191, 1195, 1171 
734, 1192, 1216, 1220, 1196, 1191, 1215, 1219, 1195 
735, 1172, 1196, 1200, 1176, 1171, 1195, 1199, 1175 
736, 1196, 1220, 1224, 1200, 1195, 1219, 1223, 1199 
*Elset, elset=ilt, internal, generate 
1, 736, 1  
*Solid Section, elset=ilt, material=ILT 
1., 
*End Instance 
*Elset, elset=walltie, internal, instance=WALLINST, generate 
1, 1961, 1  
*Surface, type=ELEMENT, name=insideofwall 
walltie, SNEG 
*Elset, elset=outside_ilt_elset, internal, instance=THRINST 
1, 3, 5, 7, 9, 11, 13, 15, 17,  
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19, 21, 23, 25, 27, 29, 31, 33, 35, 37,  
39, 41, 43, 45, 47, 49, 51, 53, 55, 57,  
59, 61, 63, 65, 67, 69, 71, 73, 75, 77,  
... 
... 
... 
639, 641, 643, 645, 647, 649, 651, 653, 655, 657,  
659, 661, 663, 665, 667, 669, 671, 673, 675, 677,  
679, 681, 683, 685, 687, 689, 691, 693, 695, 697,  
699, 701, 703, 705, 707, 709, 711, 713, 715, 717,  
719, 721, 723, 725, 727, 729, 731, 733, 735,  
*Surface, type=ELEMENT, name=outside_ilt_surface 
outside_ilt_elset, S6 
*Elset, elset=wallnoilt_elset, internal, instance=WALLINST 
1, 2, 3, 4, 5, 6, 7, 8, 9,  
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,  
20, 21, 22, 23, 24, 25, 26, 27, 28, 29,  
30, 31, 32, 33, 34, 35, 36, 37, 38, 39,  
40, 41, 42, 43, 44, 45, 46, 47, 48, 49,  
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,  
60, 61, 62, 63, 64, 65, 66, 67, 68, 69,  
... 
... 
... 
1918, 1919, 1920, 1921, 1922, 1923, 1924, 1925, 1926, 1927,  
1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1936, 1937,  
1938, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1946, 1947,  
1948, 1949, 1950, 1951, 1952, 1953, 1954, 1955, 1956, 1957,  
1958, 1959, 1960, 1961,  
*Surface, type=ELEMENT, name=wallnoilt_surface 
wallnoilt_elset, SNEG 
*Elset, elset=inside_ilt, internal, instance=THRINST 
2, 4, 6, 8, 10, 12, 14, 16, 18,  
20, 22, 24, 26, 28, 30, 32, 34, 36, 38,  
40, 42, 44, 46, 48, 50, 52, 54, 56, 58,  
60, 62, 64, 66, 68, 70, 72, 74, 76, 78,  
... 
... 
... 
640, 642, 644, 646, 648, 650, 652, 654, 656, 658,  
660, 662, 664, 666, 668, 670, 672, 674, 676, 678,  
680, 682, 684, 686, 688, 690, 692, 694, 696, 698,  
700, 702, 704, 706, 708, 710, 712, 714, 716, 718,  
720, 722, 724, 726, 728, 730, 732, 734, 736,  
*Surface, type=ELEMENT, name=inside_ilt_surface 
inside_ilt, S4 
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*Nset, nset=bottomnodeset, instance=WALLINST 
416, 427, 438, 449, 460, 471, 482, 493, 504,  
515, 526, 537, 548, 559, 570, 878, 889, 900, 911,  
922, 933, 944, 955, 966, 977, 988, 1377, 1388, 1399,  

1520, 1882, 1893, 1904, 1915, 1926, 1937, 1948, 1959, 1970,  

*Nset, nset=topnodeset, instance=WALLINST 

*Hyperelastic, n=2 

1410, 1421, 1432, 1443, 1454, 1465, 1476, 1487, 1498, 1509,  

1981, 1992, 2003, 2014,  

1, 17, 33, 49, 65, 81, 97, 113, 129,  
145, 161, 177, 193, 209, 225, 571, 587, 603, 619,  
635, 651, 667, 683, 699, 715, 731, 989, 1005, 1021,  
1037, 1053, 1069, 1085, 1101, 1117, 1133, 1149, 1165, 1181,  
1197, 1521, 1537, 1553, 1569, 1585, 1601, 1617, 1633, 1649,  
1665, 1681, 1697, 1713,  
*Tie, name=tiecontact, adjust=yes, position tolerance=0 
outside_ilt_surface, insideofwall 
*End Assembly 
*********************************************** 
*Material, name=wall 
*User Material, constants=8 
0.014, 477, 416.4, 408.3, 100. 
*********************************************** 
*Material, name=ILT 

0., 2.804,    0.,    0., 2.858,    0.,    0. 
*********************************************** 
*Step, name=Step1, nlgeom=YES 
*Static 
0.0001, 1., 1e-05, 0.1 
*********************************************** 
*Boundary 
bottomnodeset, 1, 3 
topnodeset, 1, 3 
*********************************************** 
*Dsload 
wallnoilt_surface, P, 1.6 
*Dsload 
inside_ilt_surface, P, 1.6 
*Restart, write, frequency=1 
*Output, field 
*Node Output 
COORD, U 
*Element Output 
3 
E, S 
*Output, history, variable=PRESELECT 
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*El Print, freq=999999 
*Node Print, freq=999999 
*EndStep 
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APPENDIX G 

 
 
 
 

ABAQUS UMAT SUBROUTINE FOR ANISOTROPIC IMPLEMENTATION 
 
 
 
 
      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 
     1 RPL,DDSDDT,DRPLDE,DRPLDT,STRAN,DSTRAN, 

C 

     2 TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,MATERL,NDI,NSHR,NTENS, 
     3 NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,CELENT, 
     4 DFGRD0,DFGRD1,NOEL,NPT,KSLAY,KSPT,KSTEP,KINC) 
C 
      INCLUDE 'ABA_PARAM.INC' 
C 
      CHARACTER*8 MATERL 
      DIMENSION STRESS(NTENS),STATEV(NSTATV), 
     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 
     2 STRAN(NTENS),DSTRAN(NTENS),DFGRD0(3,3),DFGRD1(3,3), 
     3 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3) 
C 
 
C    LOCAL ARRAYS 
C ---------------------------------------------------------------- 
C    BBAR   - DEVIATORIC RIGHT CAUCHY-GREEN TENSOR 
C    DISTGR - DEVIATORIC DEFORMATION GRADIENT (DISTORTION TENSOR) 
C ---------------------------------------------------------------- 
C 
      DIMENSION BBAR(6),DISTGR(3,3) 

      PARAMETER(ZERO=0.D0, ONE=1.D0, TWO=2.D0, THREE=3.D0, FOUR=4.D0) 
C 
C ---------------------------------------------------------------- 
C ---------------------------------------------------------------- 
C    UMAT FOR FUNG 5 MODEL HYPERELASTICITY 
C 
C WRITTEN BY: 
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C JONATHAN P. VANDE GEEST 
C PH.D CANDIDATE 
C ADVISOR: DR. DAVID VORP 
C COMPUTATIONAL VASCULAR BIOMECHANICS LABORATORY 
C DEPT OF SURGERY AND BIOENGINEERING 
C UNIVERSITY OF PITTSBURGH 
C DATE: NOV 2004 
C ---------------------------------------------------------------- 
C To run the program:  
c put below lines into your model for material definition: 
c *MATERIAL,NAME=AAA 
c ** Fung 5 parameter model 
c *USER MATERIAL,CONSTANTS=5 
c 
c ---------------------------------------------------------------- 
C    ELASTIC PROPERTIES 
C ---------------------------------------------------------------- 
C    PROPS(1) - C 
C    PROPS(2) - A1 
C    PROPS(3) - A2 
C    PROPS(4) - A3 
C    PROPS(5) - A4 - the shear term 
C    PROPS(6) - u11 
C    PROPS(6) - u22 
C    PROPS(6) - u12 
C ---------------------------------------------------------------- 
C 
C    ELASTIC PROPERTIES 
C 
      real*8 C, A1, A2, A3, A4, DET, SCALE, E11, E12, E22, S11, S22, S12 
 real*8 J1, J2, J3, J4, J5, J6,J7, J8, J9 
 real*8 l1sqrd, l2sqrd, l3sqrd, I1 
 REAL*8 F1, F2, K1, K2 
 real*8 u11, u22, u12 
c integer u 
 
 
 C =PROPS(1) 
        A1=PROPS(2) 
        A2=PROPS(3) 
 A3=PROPS(4) 
 A4=PROPS(5) 
        u11=PROPS(6) 
 u22=PROPS(7) 
 u12=PROPS(8) 
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C 
C    JACOBIAN AND DISTORTION TENSOR 
C 
      DET=DFGRD1(1, 1)*DFGRD1(2, 2)*DFGRD1(3, 3) 
     1   -DFGRD1(1, 2)*DFGRD1(2, 1)*DFGRD1(3, 3) 
      IF(NSHR.EQ.3) THEN 
        DET=DET+DFGRD1(1, 2)*DFGRD1(2, 3)*DFGRD1(3, 1) 
     1         +DFGRD1(1, 3)*DFGRD1(3, 2)*DFGRD1(2, 1) 
     2         -DFGRD1(1, 3)*DFGRD1(3, 1)*DFGRD1(2, 2) 
     3         -DFGRD1(2, 3)*DFGRD1(3, 2)*DFGRD1(1, 1) 
      END IF 
      SCALE=DET**(-ONE/THREE) 
      DO K1=1, 3 
        DO K2=1, 3 
          DISTGR(K2, K1)=SCALE*DFGRD1(K2, K1) 
        END DO 
      END DO 
  
C 

     1       +DISTGR(1, 3)*DISTGR(2, 3) 

C    CALCULATE LEFT CAUCHY-GREEN TENSOR 
C 
      BBAR(1)=DISTGR(1, 1)**2+DISTGR(1, 2)**2+DISTGR(1, 3)**2 
      BBAR(2)=DISTGR(2, 1)**2+DISTGR(2, 2)**2+DISTGR(2, 3)**2 
      BBAR(3)=DISTGR(3, 3)**2+DISTGR(3, 1)**2+DISTGR(3, 2)**2 
      BBAR(4)=DISTGR(1, 1)*DISTGR(2, 1)+DISTGR(1, 2)*DISTGR(2, 2) 

      IF(NSHR.EQ.3) THEN 
        BBAR(5)=DISTGR(1, 1)*DISTGR(3, 1)+DISTGR(1, 2)*DISTGR(3, 2) 
     1         +DISTGR(1, 3)*DISTGR(3, 3) 
        BBAR(6)=DISTGR(2, 1)*DISTGR(3, 1)+DISTGR(2, 2)*DISTGR(3, 2) 
     1         +DISTGR(2, 3)*DISTGR(3, 3) 
      END IF       
C 
C    CALCULATE THE STRAIN 
C 
      E11=0.5*(DFGRD1(1, 1)**2+DFGRD1(2, 1)**2-1) 
 E22=0.5*(DFGRD1(1, 2)**2+DFGRD1(2, 2)**2-1) 
 E12=0.5*(DFGRD1(1, 1)*DFGRD1(1, 2)+DFGRD1(2, 2)*DFGRD1(2, 1)) 
 E21=0.5*(DFGRD1(1, 2)*DFGRD1(1, 1)+DFGRD1(2, 2)*DFGRD1(2, 1)) 
 E33=ZERO 
 
c Fung 5 parameter strain energy function 
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 Q=A1*E11**2+A2*E22**2+2*A3*E11*E22+A4*E12**2 
  
 D1=2*(A1*E11+A3*E22) 
 D2=2*(A2*E22+A3*E11) 
 D3=2*(A4*E12) 
 
 
 

C OUTPUT TO VALIDATE DATA FILE 

 STRESS(1)=(F1*S11+K1*S12)*F1+(F1*S12+K1*S22)*K2 

C J4 is dS11/dE22, which is equivalent to J7 = dS22/dE11     

S11= 2*u11*E11 + C*(A1*E11*EXP(0.5*A1*E11**2)+A3*E22*EXP(A3*E11*E22)) 
 S22= 2*u22*E22 + C*(A2*E22*EXP(0.5*A2*E22**2)+A3*E11*EXP(A3*E11*E22)) 
 S12= 2*u12*E12 + C*(A4*E12*EXP(0.5*A4*E12**2)) 
 S33= ZERO 
  
C S11= 2*u11*E11 + 0.5*C*D1*EXP(Q) 
C S22= 2*u22*E22 + 0.5*C*D2*EXP(Q) 
C S33= ZERO 
C S12=0.5*C*D3*EXP(Q) 
 

c write(unit=u,fmt="(E,E,E,E,E,E)")E11,E22, E12 
c 1,S11,S22, S12 
C OUTPUT TO DAT FILE 
C write(unit=u,fmt="(E,E,E,E,E,E)")E11, E12, E22 
C 1,S11, S12, S22 
 
 F1=DFGRD1(1, 1) 
 F2=DFGRD1(2, 2) 
 K1=0.5*(DFGRD1(1, 2)+DFGRD1(2,1)) 
 K2=K1 
 
C    CALCULATE THE STRESS 
 

 STRESS(2)=(S11*K2+S12*F2)*K1+(K2*S12+F2*S22)*F2 
 STRESS(3)=(S11*K2+S12*F2)*F1+(K2*S12+F2*S22)*K2 
 
 J1=2*u11 + C*( A1*EXP(0.5*A1*E11**2) + EXP(0.5*A1*E11**2)*(A1*E11)**2 + 
EXP(A3*E11*E22)*(A3*E22)**2 ) 
 J2=2*u22 + C*( A2*EXP(0.5*A2*E22**2) + EXP(0.5*A2*E22**2)*(A2*E22)**2 + 
EXP(A3*E11*E22)*(A3*E11)**2 ) 
 J3=2*u12 + C*( A4*EXP(0.5*A4*E12**2) + EXP(0.5*A4*E12**2)*(A4*E12) ) 

 J4=C*( A3*A3*E11*E22*EXP(A3*E11*E22) + A3*EXP(A3*E11*E22) ) 
C J5 is dS12/dE11 
 J5=0 
C        J5= 0.5*C*EXP(Q)*(D1*D3) 
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C J6 is dS12/dE22 
 J6=0 
C J6= 0.5*C*EXP(Q)*(D2*D3) 
 J7=J4 
 J8=J5 
 J9=J6 
 
C      J1= 0.5*C*EXP(Q)*((2*A1)+D1**2) 
C      J2= 0.5*C*EXP(Q)*((2*A2)+D2**2) 
C      J3= 0.5*C*EXP(Q)*((2*A4)+D3**2) 
C      J4= 0.5*C*EXP(Q)*((2*A3)+D1*D2) 
C      J5= 0.5*C*EXP(Q)*(D1*D3) 
C      J6= 0.5*C*EXP(Q)*(D2*D3) 
C      J7= J4 
C      J8= J5 
C      J9= J6 
C 
C    CALCULATE THE STIFFNESS MATRIX 
C 
      DDSDDE(1, 1)= 2*F1*S11+F1*F1*J1+K1*S12+F1*K1*J8+ 
 1              K1*S12+F1*K1*J8+K1*K1*J7 
 
      DDSDDE(2, 2)= K2*K2*J4+K2*S12+F2*K2*J9+K2*S12+ 
 1              F2*K2*J9+2*F2*S22+F2*F2*J2 
 
      DDSDDE(3, 3)= F1*S11+F1*K2*J5+F1*F2*J3+2*K1*S12 
 1              +K1*K2*J3+F2*S22+K1*F2*J6 
 
      DDSDDE(1, 2)= F1*F1*J4+F1*K1*J9+K1*F1*J9+K1*K1*J2 
   
      DDSDDE(1, 3)= F1*F1*J5+F1*S12+K1*F1*J3+F1*S12+K1*F1*J3 
 1              +2*K1*S22+K1*K1*J6 
 
      DDSDDE(2, 3)= 2*K2*S11+K2*K2*J5+F2*S12+K2*F2*J3+F2*S12 
 1              +K2*F2*J3+F2*F2*J6 
       
 DDSDDE(2, 1)= DDSDDE(1, 2) 
 
 DDSDDE(3, 1)= K2*S11+F1*K2*J1+F2*S12+F1*F2*J8+K1*K2*J8 
 1              +K1*F2*J7 
 
 DDSDDE(3, 2)= F1*K2*J4+F1*S12+F1*F2*J9+K1*K2*J9 
 1              +K1*S22+K1*F2*J2 
C close(u) 
C 
      RETURN 
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      END 
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MATLAB FUNCTION TO CREATE BIAXIAL SPECIMEN SIMULATIONS 
 

 

function create_nodeset = findnodes(ofname,ifname,seed,depthnode,length,step,numnodes); 
% function create_nodeset = findnodes(ofname,ifname,seed,depthnode,length,step,numnodes); 
% ofname and ifname should be written 'filename.txt' 
% this program assumes you are using a first order element 
% 
% seed = global element size as defined when seeding mesh in Abaqus 
% depthnode = number of nodes user wants to leave open from edges 
% length = length in mm  specimen must be square dimensions 
% step = number of nodes between each chosen node 
% numnodes = number of nodes wanted in each displacement nodeset 
 
%load input file *.txt 
eval(strrep('load j','j',ifname)) 
data=eval(strrep(ifname,'.txt','')); 
 
fod=fopen(ofname,'w'); 
 
% m is the # of rows, n is the # of cols 
[m,n]=size(data); 
 
%  This program needs node number in column 1, x in column 2, and y in column 3 
%  The nodes sets are labeled counterclockwise staring with node set one on the right 
%  The output is nodesets 1,2,3,4 in columns 5,6,7,8 respectively 
 
%CALCULATIONS 
 
halflength = length / 2; 
depthlength = depthnode * seed; 
dimensionb = halflength - depthlength; 
increment = seed * step; 
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%FINDING NODESETS 
 
%NODESET ONE 
x1 = dimensionb; 
a = linspace(increment*(numnodes-1)/2,-1*increment*(numnodes-1)/2,numnodes)'; 

     for k3 = 1:m 

node=data(:,1); 
x=data(:,2); 
y=data(:,3); 
 
for i = 1:4, 
eval(strrep('cell$(1:m,1)=0;','$',int2str(i))); 
end 
 
for j=1:numnodes 
     for k = 1:m 
          if (x(k)==x1 & y(k)==a(j)) 
                 cell1(k,1)=node(k,1); 
          end 
     end 
end 
 
%NODESET TWO 
y2 = dimensionb; 
 
for j2 = 1:numnodes 
     for k2 = 1:m 
          if (y(k2)==y2 & x(k2)==a(j2)) 
                 cell2(k2,1)=node(k2,1); 
          end 
     end 
end 
 
%NODESET THREE 
x3 = -1*dimensionb; 
 
for j3 = 1:numnodes 

          if (x(k3)==x3 & y(k3)==a(j3)) 
                 cell3(k3,1)=node(k3,1); 
          end 
     end 
end 
 
%NODESET FOUR 
y4 = -1*dimensionb; 
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for j4 = 1:numnodes 
     for k4=1:m 
          if (y(k4)==y4 & x(k4)==a(j4)) 
                 cell4(k4,1)=node(k4,1); 
          end 

 

for i=1:size(indice1), 
    fprintf(fod,'%i %i %i %i\n',indice1(i),indice2(i),indice3(i),indice4(i)); 

hold on; 

     end 
end 
 
for i = 1:4, 
eval(strrep('indice$=find(cell$(:,1)~=0);','$',int2str(i))) 
end 

 

end 
 
plot(data(indice1,2),data(indice1,3),'b.') 

plot(data(indice2,2),data(indice2,3),'b.') 
hold on; 
plot(data(indice3,2),data(indice3,3),'b.') 
hold on; 
plot(data(indice4,2),data(indice4,3),'b.') 
fclose(fod); 
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APPENDIX I 
 
 
 
 

POST PROCESSING MATLAB FUNCTION FOR STRESS GRADIENTS 
 
 
 
 

% read in the user defined output data file...which is saved to the array abaqus_data 

function postprocessing 
% This is the main function which calls all other functions 
 
close all 
clear all 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 

filename=uigetfile('*.txt','Please choose a AAA by choosing one of its results files: '); 
age=input('Please enter the age of the Patient: '); 
sex=input('Please enter sex (0.5 for male, -0.5 for female): '); 
hist=input('Please enter hist (0.5 if yes, -0.5 if no):  '); 
%abaqus_data=read_results(filename); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
% read in the wall mesh file for the undeformed nodes and the connectivity 
for i=1:length(filename) 
    if filename(i)=='_' 
        endoftag=i-1; 
        break 
    end 
end 
tag=filename(1:endoftag); 
filename2=[tag '_wall.txt']; 
[undeformed_mesh,undeformed_connectivity]=read_wall_mesh(filename2); 
clear i endoftag filename2 
fname1=strcat(tag,'_ANI_ISO.txt');fname2=strcat(tag,'_ISO_ISO.txt'); 
fname3=strcat(tag,'_ANI_ANI.txt');fname4=strcat(tag,'_ANI_NOILT.txt'); 
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fname5=strcat(tag,'_ISO_NOILT.txt'); 
ani_iso=read_results(fname1); 
iso_iso=read_results(fname2); 
ani_ani=read_results(fname3); 
ani_noilt=read_results(fname4); 
iso_noilt=read_results(fname5); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% read in the DSMITH plt file ...contains local curvatures 
filename3=[tag '_wall.plt']; 
[dsmith_data]=read_dsmith(filename3,ani_iso); % here the choice of ani_iso is arbitrary 
clear filename3 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% read in the ilt mesh file from TrueGrid 
filename4=[tag '_ilt.txt']; 
[iltnodes_xyz,iltconnectivity,l_nodes]=read_ilt_mesh(filename4); 
clear filename4 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% We need to update ani_iso, etc. so that X Y and Z correspond to the 
% undeformed config! 
jon=undeformed_mesh(:,2:4); 
ani_iso(:,2:4)=jon; 
iso_iso(:,2:4)=jon; 
ani_ani(:,2:4)=jon; 
ani_noilt(:,2:4)=jon; 
iso_noilt(:,2:4)=jon; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Use old_RPI to calculate local diamter, old RPI, etc. 
% final_mesh is Node X Y Z Stress ILT_thick old_NORD old_Strength old_RPI 
% global_new_mesh is needed in new_RPI 
[final_mesh1,global_new_mesh1,m_use1,age]=old_RPI(ani_iso, l_nodes,age); 
[final_mesh2,global_new_mesh2,m_use2,age]=old_RPI(iso_iso,l_nodes,age); 
[final_mesh3,global_new_mesh3,m_use3,age]=old_RPI(ani_ani,l_nodes,age); 
[final_mesh4,global_new_mesh4,m_use4,age]=old_RPI_noilt(ani_noilt,l_nodes,age); 
[final_mesh5,global_new_mesh5,m_use5,age]=old_RPI_noilt(iso_noilt,l_nodes,age); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Use new_RPI to calculate the new Strength and RPI values.  It also 
% outputs the old (D Wang) strength values 
% The format of these arrays is: 
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% Node,X,Y,Z,PrinE,E11,E22,Mises,MPrincS,S11,S22,newStrength,newRPI,old_Strength, 
oldRPI 
%  
[ani_iso]=new_RPI(final_mesh1,global_new_mesh1,ani_iso,age,m_use1,sex,hist); 
[iso_iso]=new_RPI(final_mesh2,global_new_mesh2,iso_iso,age,m_use2,sex,hist); 
[ani_ani]=new_RPI(final_mesh3,global_new_mesh3,ani_ani,age,m_use3,sex,hist); 
[ani_noilt]=new_RPI_noilt(final_mesh4,global_new_mesh4,ani_noilt,age,m_use4,sex,hist); 
[iso_noilt]=new_RPI_noilt(final_mesh5,global_new_mesh5,iso_noilt,age,m_use5,sex,hist); 
new=iso_iso(:,9)./iso_iso(:,14); 
iso_iso=[iso_iso new]; 
new2=zeros(length(ani_iso),1); 
ani_iso=[ani_iso new2]; 
ani_ani=[ani_ani new2]; 
ani_noilt=[ani_noilt new2]; 
iso_noilt=[iso_noilt new2]; 
clear m_* ilt* l_* new final_* global_*  new2 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    eval(strrep('data%=[eval(char(celldata(i))) temp1];','%',num2str(i))); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

printoutPLT(fname1,undeformed_mesh,ani_iso,undeformed_connectivity); 

% calculate gradients here and append them to the data arrays ani_iso etc. 
% now ani_iso is (where g stands for gradients) 
% Node,X,Y,Z,  PrinE,  E11,  E22,  Mises,  MPrincS,  S11,  S22,  newStrength,  newRPI,  
old_Strength,  oldRPI 
%             gPrinE, gE11, gE22, gMises, gMPrincS, gS11, gS22, gnewStrength, gnewRPI, 
gold_Strength, goldRPI 
data = ['ani_iso  ';'iso_iso  ';'ani_ani  ';'ani_noilt';'iso_noilt']; 
celldata = cellstr(data); 
for i=1:5 
    [a,b]=size(eval(char(celldata(i)))); 
    temp1=zeros(a,b-4); 
    for j=5:b 
        temp2=global_gradients(eval(char(celldata(i))),j); 
        temp1(:,j-4)=temp2; 
    end 

end 
ani_iso=data1; iso_iso=data2; ani_ani=data3; ani_noilt=data4; iso_noilt=data5; 
clear data* temp* a b data celldata  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Print out results summary file...must also calculate gradients here 
printoutsummary(tag,ani_iso,iso_iso,ani_ani,ani_noilt,iso_noilt); 

% Print out results to one PLT file 
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printoutPLT(fname2,undeformed_mesh,iso_iso,undeformed_connectivity); 
printoutPLT(fname3,undeformed_mesh,ani_ani,undeformed_connectivity); 
printoutPLT(fname4,undeformed_mesh,ani_noilt,undeformed_connectivity); 
printoutPLT(fname5,undeformed_mesh,iso_noilt,undeformed_connectivity); 
clear fname* i j filenam 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Print out gradient file 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
outputgradientfile(tag,ani_iso,iso_iso,ani_ani,ani_noilt,iso_noilt); 
eval(strrep('save %_FINAL_RESULTS','%',tag)) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % The portion of code below prompts the user for a location of 
% interest, it has been commented out for simplicity  If you uncomment 
% it it will need to be updated as the variable names have changed 
% % prompt the user for the value of z in which the IMA stitch was 
% located...to determine the values of stress etc at that level 
% 
% fprintf('The top and bottom of the AAA are: '); 
% topz  
% botz 
% zofinterest=input('Please enter the value of z for which you would like to calculate the values 
of stress, curvature, and strain:'); 
%  
% a=find(dsmith_data(:,4)>zofinterest-0.4 & dsmith_data(:,4)<zofinterest+0.4);  
% answer=dsmith_data(a,:); 
%  
% % the columns of abaqus_data are Node coord1 coord2 coord3 maxprinE E11 E22 Mises 
maxprinS S11 S22 strength rpi 
%  
% vonmises_stress=mean(answer(:,8)); 
% maxprinc_stress=mean(answer(:,9)); 
% maxprinc_strain=mean(answer(:,5)); 
% E11=mean(answer(:,6)); 
% E22=mean(answer(:,7)); 
%  
% b=find(curv_values(:,3)>zofinterest-0.2 & curv_values(:,3)<zofinterest+0.2); 
% answer2=curv_values(b,:); 
% firstprincurv=mean(answer2(:,4)); 
% secondprincurv=mean(answer2(:,8)); 
 
%clear topz botz a b  
% 
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APPENDIX J 

 
 
 
 

RESIDUALS VERSUS EACH INDEPENDENT VARIABLE 
 
 
 
 
The residuals of each independent strength variable are displayed on the following page. 
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APPENDIX K 
 
 
 
 

MATLAB FUNCTION CALCULATING RPI 
 
 
 
 
function 
[abaqus_data]=new_RPI(final_mesh,global_new_mesh,abaqus_data,age,m_use,sex,hist) 
 
%Computes the strength and RPI of FE models of AAA 
%conn is a variable containing the connectivity of the triangular wall mesh (n by 3) 
%nodes: n*5 matrix of node x y z stress for the nodes just on the wall 
%extras is a variable of size (n X 4), where n is the number of nodes in the wall mesh 
%this array consists of the ILT NORD STRENGTH RPI from davids results 
%age is the age of the patient in years - used to determine the nonaneurysmal diameter 
%sex is the sex of the patient (sex=0.5 for males and sex=-0.5 for females) 
%hist is the family history of the patient (hist=0.5 if yes, hist=-0.5 if no) 
%final is the returned value which is an array of size n*7, where col 1=node number, 
%col 2-4 = x y z, col 5 = stress, col 6 = strength, col 7 = rpi 
ilt=final_mesh(:,6); 
%Diameter 
loc_diameter=global_new_mesh(:,3); 
 
max_dia=2*max(global_new_mesh(:,3)); 
%ilt=extras(:,1); 
%nord=extras(:,2); 
%old_strength=extras(:,3); 
%old_rpi=extras(:,4); 
%loc_diameter=nord*max_dia; 
sqrt_ilt=sqrt(ilt); 
%stress=nodes(:,5); 
stress=final_mesh(:,5); 
 
%Normalized Diameter 
 
if sex==0.5 
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    prox=0.0127*age+1.1673; 
else 
    prox=0.0065*age+1.2342; 

    abaqus_data(i,13)=abaqus_data(i,9)/abaqus_data(i,12); 

end 
 
norm_loc=loc_diameter/prox; 
 
for i =1:size(final_mesh(:,1)), 
    final_mesh(i,10)=72.9-33.5*(sqrt_ilt(i)-0.79)-12.3*(norm_loc(i)-2.31)-24*hist+15*sex; 
    %column 10 is strength; 
end 
 
final_mesh=final_mesh(m_use,:); 
 
window=1.5; 
for i=1:length(abaqus_data) 
    matchingrows=find((abs(abaqus_data(i,2)-final_mesh(:,2))<window) &... 
    (abs(abaqus_data(i,3)-final_mesh(:,3))<window) &... 
    (abs(abaqus_data(i,4)-final_mesh(:,4))<window)); 
    % col 12 is new strength 
    abaqus_data(i,12)=mean(final_mesh(matchingrows,10)); 
    % col 13 is new rpi 

    % col 14 is the old strength 
    abaqus_data(i,14)=mean(final_mesh(matchingrows,8)); 
    %check=notfinishedyet; 
end 
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