
Parsons et al. - Simulations of Solid Rocket Motors

1

Fluid-Structure Interaction through a Non-Material Interface:
Simulations of Solid Rocket Motors

I. D. Parsons, P. Alavilli, A. Namazifard, X. Jiao, A. Acharya

Center for the Simulation of Advanced Rockets
University of Illinois at Urbana-Champaign

Abstract
We describe simulations of solid rocket motors that involve coupling
between the core fluid flow, the structural response of the propellant and
case and the combustion of the propellant. A predictor-corrector algorithm
is employed to treat the fluid-structure interaction. The combustion rate of
the propellant is coupled to the fluid flow via an empirical power law
relationship. Our algorithm couples the physical processes involved using
a partitioned approach, enabling us to use existing codes to perform the
bulk of our simulations. We give special consideration to the jump
conditions that hold at the fluid-structure-combustion interface. A large-
scale simulation is described that demonstrates the capability of our code.

1. Introduction
Simulation of solid rocket motors presents challenges in many areas. A complete

simulation requires consideration of different physics (e.g., fluid flow, structural
deformation, fuel combustion, etc.), careful treatment of the interface between these
zones and efficient parallel numerical algorithms. In this paper, we outline a preliminary
implementation of a parallel code that couples the structural deformations experienced by
the rocket fuel and casing with the fluid flow in the core of the rocket.

A code that will perform coupled multi-physics simulations can be designed using
either a monolithic or a partitioned strategy. The monolithic approach requires that a
single new code be developed by the various researchers who work in the different
physics groups. Global iterations are performed that simultaneously update all of the
variables in the different physics zones. The interface conditions are enforced as part of
the global iterations. In contrast, the partitioned approach uses existing application codes
that may have been developed by the different groups independently of any integration
effort. Interface conditions are enforced by iteration between these different physics
modules. Thus, the partitioned approach provides a relatively straightforward path for
integration of the physics demanded by a complete simulation of a solid rocket motor.

The paper is constructed as follows. We first describe the three component codes:
ROCFLO, ROCSOLID and ROCFACE. We then discuss the implementation of a
partitioned algorithm that requires iteration to self-consistency between ROCSOLID and
ROCFACE. We end the paper with a brief description of a large-scale demonstration
simulation of the space shuttle solid rocket motor.

Parsons et al. - Simulations of Solid Rocket Motors

2

2. ROCFLO - The Fluids Solver
ROCFLO is a CFD code developed to simulate solid rocket booster core flow

dynamics. Rocket flow problems exhibit singular features compared to other flow
environments, primary being the fast propagating acoustic pulses in the chamber that
could potentially cause instabilities and lead to rocket malfunction.

A three dimensional, structured, finite volume, cell-centered approach is adopted. In
this framework complex geometries are handled through a multiblock approach. The
multiblock approach also lends itself to parallel computing. The Navier-Stokes equations
are solved on dynamic meshes whose boundaries adapt to conform to the propellant
surface that deforms due to the loads imposed on it. Some details of the code are
presented in this section; for further details consult [1].

The spatial discretization schemes implemented in ROCFLO are the central scheme
with artificial dissipation [5] and two second order TVD schemes: Roe's flux difference
splitting scheme [11] and Yee's symmetric TVD scheme [12]. A number of limiters, i.e.,
minmod, van Leer, van Albada and Superbee, have also been implemented. Yee's
symmetric TVD scheme, along with one of the more diffusive limiters such as minmod,
have been shown in the literature to perform very well in rocket chamber type
simulations. Consequently this scheme is generally utilized in computations.

The flow equations are marched in time using an explicit multistage Runge-Kutta
method. For the unsteady computations of the integrated rocket code, a two stage method
is used as well as global time stepping, where the marching step size is limited by the
smallest time step of all the cells in the computational domain.

ROCFLO is implemented in Fortran90. Fortran90 offers many features useful for
parallel programming over Fortran77. Primary of these are the user defined data types. A
computational block may be defined as an object and contains all data relevant to that
block (node coordinates, face normals, volumes, solutions, parameters, etc.). This object
model facilitates placement and migration of computational blocks on processors. The
code was initially optimized for scalar performance both with respect to minimization of
operations and also cache utilization. The code executes at about 80 Mflops on a single
processor of a Origin2000. The code also scales very well on the Origin [9]. Further
refinements are in progress.

3. ROCSOLID - The Structures Solver
ROCSOLID, the structural analysis code used in the coupled simulations, employs a

finite element discretization of the problem domain using unstructured meshes. Dynamic
problems are solved using the implicit Newmark time integrator [2]. The linear matrix
equations encountered within the Newton iterations at each time step are solved using a
scalable parallel multigrid solver [8]. The code is written in Fortran 90, and uses MPI to
perform interprocessor communications.

Examination of the multigrid algorithm demonstrates that all of the operations can be
performed independently on partitioned domains [10]. In particular, the main components
of the algorithm are matrix-vector multiplications that can be efficiently implemented
element-by-element. Interprocessor communications are only required during the matrix-

Parsons et al. - Simulations of Solid Rocket Motors

3

vector multiplications, scalar products and fine-to-coarse mesh restriction. Matrix free
element computations reduce the storage and the time requirements of our
implementation; for example, the product Kp , where K is a stiffness matrix and p is
the search direction in conjugate gradient iteration, can be written as

e

e e T e

e e
dV

= =

∑ ∑ ∫Kp K p B DB p
R

. (1)

Computations can then proceed from right to left. The mesh is partitioned into a number
of domains with equal numbers of elements and the product Kp is formed locally on
each processor using the approach outlined in Equation (1); interprocessor
communications are then performed using nonblocking MPI communications.

Multigrid methods require a hierarchy of increasingly finer meshes. We use Truegrid
to produce a sequence of nested, uniformly refined hexahedral meshes, which allows us
to model complex parts. Mesh partitioning is performed on the coarsest mesh using Metis
to achieve perfect load balance between the processors. Uniform refinement of the
coarsest mesh partitions produces the required partitions on all of the fine meshes. Thus,
perfect element load balance is maintained through the mesh hierarchy, although the
resulting communication pattern may not be optimum.

4. ROCFACE - The Interface Code
The interface code handles mesh association and data transfer between the fluid and

solid meshes across multiple processors. The mesh association algorithm is used to
determine the geometric relationship between the two non-matching meshes by locating
the closest solid element for each fluid nodal point on the interface. Our algorithm
traverses the fluid nodes and solid elements from neighbor to neighbor so that the closest
elements can be located quickly [6]. We perform mesh association at every time step to
track the moving interface. Since the geometric relationship changes rather slowly
between the two meshes, from the second time step we search for the closest element of a
fluid node starting from its closest element in the previous time step to speed up the
search.

The result of the mesh association is then used for motion and load transfer between
the fluid and solid meshes. It is essential to ensure conservation during data transfer; we
are currently using the methods in [4]. Specifically, we transfer displacements and
velocities from solids to fluids by interpolating the values for each fluid nodal point at its
closest point on the solid mesh. For load transfer, the nodal forces for each solid node is
evaluated as a weighed sum of the fluid nodal forces. The method uses the same set of
coefficients for both load and motion transfer, and as a consequence, guarantees global
conservation of energy [4].

Since the fluid and solid meshes are distributed across multiple processors, the
interface code must handle distributed meshes. In our parallel implementation, we first
compute the bounding boxes of the partitions of the solid mesh and of the blocks of the
fluid mesh. These bounding boxes are compared to provide a quick estimate of the
geometric relationship between the solid partitions and the fluid blocks. Then the solid
partitions adjacent to a fluid block are shipped to the processor that owns the fluid block,

Parsons et al. - Simulations of Solid Rocket Motors

4

fluid

solid

Figure 1: Interface geometry.

and are connected together to form a new mesh. The sequential mesh association
algorithm is then applied on each processor in parallel. As the by-product of mesh
association, a more accurate communication pattern is obtained which is used to
communicate the physical quantities between processors to perform data transfer. The
interface code is implemented in C++ using object-oriented techniques, employing the
CGAL library (www.cs.uu.nl/CGAL) for the geometric primitives and the half-edge data
structure for unstructured meshes.

5. GEN1 - A Coupled Multiphysics Code for Rocket Simulations
The three component codes described above form the basis of our rocket motor

simulation tool. The key to successfully solving our coupled problem is to capture the
interface physics correctly. Figure 1 shows the combustion interface between the solid
and fluid domains; the interface moves with velocity r� , and has an outward unit normal
n measured positive into the solid domain. Consideration of conservation of mass and
linear momentum requires that

() (). . . .s s f f mρ ρ− = − =r n v n r n v n� � (2)

and

() ()() ()
f s s fm − + − =n nv v t t 0 (3)

respectively. Subscripts f and s denote the fluid and solid regions, respectively, ρ
denotes density, m denotes the mass transfer into the fluid, v denotes velocity and ()nt
denotes tractions measured with respect to n . In order to model solid rockets, we make
some simplifying assumptions regarding the motion of the fluid-solid interface.

5.1 Stationary Interface
We first consider a stationary interface, where the interface is constrained to move

with the solid, i.e., the interface regression rate, r� , is equal to the solid velocity, sv . This
assumption allows us to model the initial burn of the motor (e.g., 1t < sec), during which
the regression of the interface through the solid is small. In order to model the effect of
the mass transfer from the propellant to the core flow, we allow the interface to transfer
mass at a rate per unit area m , where

Parsons et al. - Simulations of Solid Rocket Motors

5

n
s fm apρ= , (4)

which is a standard combustion law. Consideration of the balance of mass and linear
momentum produces

. .f s
f

m
ρ

= − +v n v n (5)

and

s f fp m= −t n v , (6)

respectively.

5.2 Moving Interface
In a simulation of the full rocket burn, we must consider a moving interface. Here, the

interface will move through the solid according to the chosen combustion law. Following
the standard combustion law used for the stationary interface, we have

(). n
s fap− =r v n� . (7)

The no-slip fluid boundary condition requires that

().t
f s s= −v v v n n (8)

and balance of mass and linear momentum require

(). .
n

ns
f s

f

ap apρ
ρ

= − + +v n v n (9)

and

()() () n
s f s f s fapρ− = − + −n nt t v v , (10)

respectively.

5.3 Predictor-Corrector Coupling Algorithms
The interface conditions presented above are enforced using predictor-corrector

cycles that iterate between the fluid and solid discretizations until self-consistency is
obtained within a global time step. The algorithms follow methods described in the
aeroelasticity literature [3,7], and are outlined in Figures 2 and 3 for the stationary and
moving interfaces, respectively. To advance the solution from time nt to 1nt + by
advancing over a global time step nt∆ , we first advance the fluid solution a number of
explicit time steps (e.g., 10). This produces estimates of the fluid interface pressure and
velocity at time 1nt + , 1nt

fp + , 1nt
f

+v , respectively. Using Equations (6) and (10), the tractions

acting on the solid at the interface, 1nt
s

+t , are computed. These tractions are used as applied
loads over an implicit solid time step (s nt t∆ ∆=). For coupling purposes, in the case of
the stationary interface the solids calculation produces estimates of the interface position

Parsons et al. - Simulations of Solid Rocket Motors

6

nt

1nt +

nt

1 1,n nt t
f fp + +v

ft

1nt
s

+t

st

1 1,n nt t
s s

+ +d v

1 1,n nt t
f f

+ +d v

Figure 2: Stationary interface predictor-corrector coupling algorithm.

and velocity at 1nt + , 1nt
s

+d and 1nt
s

+v ; in the case of the regressing interface, the solid
calculation generates the solid velocity at the interface 1nt

s
+v . Using Equations (5) and (9),

these quantities provide the fluid boundary conditions that can be used to drive the
explicit fluids simulation, if necessary. In the case of the stationary interface they also
prescribe the motion of the moving boundary for the fluid calculation; otherwise
Equation (7) is used. The procedures shown in Figures 2 and 3 are repeated until the
interface quantities have converged. We examine the relative change of the nodal
velocities, displacements and forces on the solids side of the interface. When these
quantities are small, we assume that the interface has converged. The algorithms used in
ROCFACE ensure that conservative operators are used to transfer quantities across the
fluids-solids interface.

nt

1nt +

nt

ft st

1, nt
s

+r t

1nt
s

+v

1nt
f

+v

1 1, ,n nt t
f f

+ +r t v

Figure 3: Moving interface predictor-corrector coupling algorithm.

Parsons et al. - Simulations of Solid Rocket Motors

7

6. Space Shuttle Solid Rocket Motor Simulations
Our code is continuing to be developed to simulate a variety of solid rocket events.

As a demonstration of our capabilities, we recently used a 256 processor Origin2000 in
dedicated mode to simulate the first 0.1 secs of the firing of the space shuttle’s solid
rocket booster. ROCFLO used a discretization of 4,000,000 cells and ROCSOLID used a
mesh of 270,000 elements (the fluid cells were typically ten times smaller in linear
dimension that the solid elements). The fluids time step was 610− secs., resulting in a
global and solids time step of 510− secs. Further details and visualizations produced from
this simulation are available at www.csar.uiuc.edu.

References
[1] Alavilli, P. V. S., Tafti, D. and Najjar, F. 2000. The development of an advanced

solid rocket flow simulation program ROCFLO. AIAA Paper 2000-0824, 38th

AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.
[2] Bathe, K. J., 1996. Finite element procedures. Prentice-Hall.
[3] Farhat, C., Lesoinne, M. and Maman, N., 1995. Mixed explicit/implicit time

integration of coupled aeroelastic problems: three-field formulation, geometric
conservation and distributed solution. International Journal for Numerical Methods
in Fluids, 21, 807-835.

[4] Farhat, C., Lesoinne, M. and LeTallec, P., 1998. Load and motion transfer
algorithms for fluid/structure interaction problems with non-mathcing discrete
interfaces. Computer Methods in Applied Mechanics and Engineering, 157, 95-114.

[5] Jameson, A., Schmidt, W. and Turkel, E., 1981. Numerical solutions of the Euler
equations by finite volume methods using Runge-Kutta time stepping schemes.
AIAA paper 81-1259.

[6] Jiao, X., Edelsbrunner, H. and Heath, M. T., 1999. Mesh association: formulation
and algorithms. 8th International Meshing Roundtable, South Lake Tahoe, 75-82.

[7] Lohner, R. et al., 1995. Fluid-structure interaction using a loose coupling algorithm
and adaptive unstructured grid. Computational Fluid Dynamics Review 1995, John
Wiley, New York, 755-776.

[8] Namazifard, A. and Parsons, I. D., 1998. Parallel multigrid methods for structural
mechanics using Fortran 90 and MPI. Poster presentation at Supercomputing 98.

[9] Parsons, I. D., Alavilli, P. V. S., Namazifard A., Hales, J. and Tafti, D., 1999.
Coupled multi-physics simulations of solid rocket motors. Proceedings of the
PDPTA'99 International Conference, 3101-3107.

[10] Parsons, I. D., 1997. Parallel adaptive multigrid methods for elasticity, plasticity and
eigenvalue problems. Parallel Solution Methods in Computational Mechanics,
Papadrakakis, M., editor, Wiley, 143-180.

[11] Roe, P. L., 1981. Approximate Riemann solvers, parameter vectors, and difference
schemes. Journal of Computational Physics, 40, 263.

[12] Yee, H. C., 1987. Construction of explicit and implicit symmetric TVD schemes
and their applications. Journal of Computational Physics, 68, 151-179.

