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Abstract 
 
A multi-dimensional finite element method (GWADAPT) which utilizes local mesh adaptation is 
used to calculate groundwater flow and subsurface transport of contaminant in saturated and 
unsaturated conditions. The model uses simple modifications to increase computational speed and 
reduce storage, allowing the model to run on PCs and workstations. GWADAPT can be accessed 
from the web and downloaded to a file. A parallel version of the model runs on an SGI Origin 
2000 computer. 
 
1 Introduction 
 
Increasing emphasis is now being placed on the use of predictive computer 
models for regulatory and cleanup activities associated with groundwater flow 
and subsurface contaminant transport. Modeling such problems involves 
complicated physics, chemistry, and multi-phase flow phenomena, and typically 
requires the use of numerical techniques. A particularly attractive numerical 
scheme now being used to model subsurface transport is the finite element 
method (FEM). 

Finite element codes have been used for many years to simulate 
transport of subsurface contaminant1,2. Early successes with the FEM in 
groundwater transport subsequently lead to increased application of the 
method.3-5 Huyakorn and Wadsworth6 developed a 3-D finite element model for 
fluid flow and solute transport in saturated or unsaturated porous media. Camp 
Dresser and McKee7 used a 3-D finite element model and a random walk 
technique with Lagrangian particles to simulate tritium dispersion. Application of 
the FEM is rather commonplace today, and widely used for groundwater 
transport.8 Two promising finite element codes now being used for assessing 
radioactive contaminant dispersion from former underground nuclear tests are 
FEFLOW9, a multi-dimensional code commercially available from Waterloo 
Geohydrologic and FEHM, a multi-dimensional code developed by Zobylovski et 
al10 at Los Alamos National Laboratory.  

The employment of adapting, unstructured meshes permits one to 
calculate difficult problems with a minimum of nodal points. Approaches in 
using FEM and mesh adaptation have been shown to be very successful for 
advection-dispersion problems.11,12 The adaptive mesh algorithm lifts much of 
the burden of mesh generation from the user while increasing accuracy of the 



results. Mesh adaptation is achieved using interpolation-based commands and 
averaging to refine/unrefine the mesh. Adapting meshes are especially effective 
for complex environmental problems, allowing one to obtain high accuracy 
with significantly reduced storage while minimizing computer time.13,14  

GWADAPT is a multi-dimensional finite element model that 
incorporates local mesh refinement (h-adaptation) to calculate flow and species 
transport in saturated and unsaturated porous media. The code is written in 
C/C++/JAVA and runs on Pentium level PCs and workstations. The model 
employs Petrov-Galerkin weighting for the advection terms, mass lumping, 
reduced integration (when appropriate), and adaptive parameters based on 
velocities and/or concentration gradients. A parallel version of the code runs on 
the SGI Origin 2000 located at the University of Nevada, Las Vegas (UNLV). 
GWADAPT includes both pre- and post-processing capabilities, allowing the 
user to develop and modify mesh configurations as well as display results in 
real time. GWADAPT can be accessed directly from its UNLV web site at 
http://www.nscee.edu/NCACM and downloaded to a file.  
 
2 Governing Equations 

The governing equations for multi-dimensional, time dependent transport of 
contaminated groundwater flow in saturated porous media can be written in 
vector form as 
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where C is the concentration, Rd is the retardation coefficient, V is the vector 
velocity field, D is the directionally dependent dispersion tensor, S (and Q) 
represents source/sink terms (precipitation, radioactive decay, pumpage and 
recharge), h is the height of the water table above an impermeable base, Sh is 
specific yield, and k is the tensor hydraulic conductivity.  

The hydrodynamic dispersion tensor, D (≡dij) is defined as15 
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where αL is the longitudinal dispersivity, αT is the transverse dispersivity, δij is 
the kronecker delta function, and µ is the molecular diffusion coefficient.  

Velocity components are determined from the relation 

    V k= − ⋅ ∇ h / θ        (4) 

where θ is effective porosity.16 



For unsaturated porous media, the governing equations are 
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where D(ψ) is the dispersion tensor based on the pressure head, ψ (ψ = h - zo), 
k(ψ) is the tensor hydraulic conductivity, Cψ is specific moisture capacity, and 
zo is a reference depth.  

Relations for D(ψ ) and k(ψ) have been examined and studied for many 
years; the most popular expressions are discussed in Guymon.17 One of the 
more popular relations stems from the work by van Genuchten (see Guymon17), 
and are used in a number of groundwater codes, i.e.,  
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where ks is saturated hydraulic conductivity, l is pore connectivity, m = 1 - 1/n 
where n is a best fit parameter, and Se is reduced saturation based on porosity 
and water content. Since the equations for unsaturated flow are nonlinear, 
Picard iteration is used to achieve convergence for D(ψ) and k(ψ).14    
 
3 The finite element method 
 
The finite element method is used as the basis for numerical implementation. 
Bilinear isoparametric quadrilateral and trilinear hexahedral elements are used to 
discretize a problem domain. Mesh generation in 2-D is achieved using 
GWMESH, which is a 2-D mesh generator package that accompanies 
GWADAPT; 3-D mesh generation is performed using TruGRID18 and FEMGV19, 
two commercially available mesh generators. 

The standard weak formulation of the Galerkin weighted residual 
technique is employed to cast the governing equations into their integral form. 
The Galerkin integral forms for Eqs. (1) and (2) are 
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where W is the weighting function, Ω is the computational domain with 
boundary Γ, and n is the unit vector normal to Γ. The boundary integrals in Eqs. 
(8) and (9) arise from the application of Green's identity to the respective flux 
terms. The flux boundary conditions associated with both equations are readily 
satisfied through the natural boundary conditions of these expressions. Similar 
expressions are obtained for Eqs. (5) and (6). 



The concentration and head are represented by the trial approximations 
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where x denotes vector space and Ni(x) is the linear basis function associated 
with the ith node of n total nodes in the mesh; in this instance, W ≡ Ni  (except 
for advection). 

The matrix equivalent forms of the resultant weak statements, Eqs. (8) 
and (9), can be expressed as 
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where the . refers to time differentiation, M, K, and A(V) are sparse matrix 
coefficients, and Fh and Fc are the right hand side vector loads. The matrix 
coefficients for Eqs. (11) and (12) are defined as 

[M] N N d      [A( )] W ( N )di j i j= z = z ⋅ ∇Ω ΩΩ Ω, V V  
 

[K ] N ( N )d     [K ] = N ( N )dc i j h i j= z ∇ ⋅ ⋅ ∇ z ∇ ⋅ ⋅ ∇Ω ΩΩ ΩD k,  
 

{F } N Sd + N ( C)d    {F } = N Qd + N ( h)dc i i h i i= z z ⋅ ⋅ ∇ z z ⋅ ⋅ ∇Ω Γ Ω ΓΩ Γ Ω Γn D n k,
 

For steady state flow, the resulting Poisson equation for h is solved using 
Cholesky skyline decomposition. Simple modifications are used to replace the 
typical FEM global assembly operations with local formulations per time step.14 
When element distortion is minimal, reduced integration is used.  

A Petrov-Galerkin scheme14 is used to stabilize the species transport 
equation. In this approach, the advection term is weighted by the function 
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where he is calculated using the mesh length vectors and α = coth β/2 - 2/β with 
β = |V|he/2De. The coefficient De is an effective diffusion in the direction of the 
local velocity vector and is calculated from the relation 
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This weighting has the effect of introducing a form of anisotropic balancing 
diffusion into the numerical scheme that acts along the local streamline.  

The mass matrix [M] is diagonalized by employing a lumped mass 



approximation 
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where all off-diagonal terms of the lumped mass matrix are zero. An explicit 
second-order Runge-Kutta method is used to advance the discretized equations 
in time. The concentration, {C}, is advanced in time according to the following 
two-step algorithm: 
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where superscript n denotes a quantity evaluated at time n∆t, with ∆t being the 
magnitude of the time step. Courant limits associated with a forward Euler 
scheme are calculated over each element, and the time step adjusted to the 
minimum value within the computational domain. 

4 Mesh Adaptation 
 

In h-adaptation, the computational mesh refines and unrefines by adding and 
subtracting elements within the computational domain as the solution evolves 
in time. The number of elements (and node points) are increased in regions of 
high gradients, and reduced where the flow is smooth. However, the overall 
number of nodes and elements increases - keeping track of new nodes and 
element connectivity can become cumbersome. 

A coarse mesh is initially generated which will allow enough transport 
details to appear and yet yield convergence. A preliminary solution (not 
converged) is computed on the crude mesh, and refinement indicators 
calculated based on the first difference of concentration within each element. 
Elements that need to be refined or unrefined are identified; refinement 
proceeds from the coarsest level to the finest level. The adaptive refinement 
threshold values are generally determined empirically; these values can be 
varied to cause more or less elements to be refined or unrefined, depending 
upon desired accuracy and computer time. 

After all the mesh changes have been made, the grid geometry is 
recalculated, the solution is interpolated onto the new grid, and the calculation 
procedure begun again. The calculation procedure continues until the 
concentration converges to a criterion of 10-4. In transient problems, the mesh is 
adapted to capture high gradient features as they evolve in time. A more 
detailed description of the adaptation process is discussed in Pepper and 



Stephenson.14 An example of 3-D mesh adaptation is shown in Fig. 1. 

 
Figure 1. 3-D Mesh Adaptation 

5 Model Results 
 
Considering a vertical flow domain that describes the contaminant influence on 
a discharging aquifer from a leaking contaminant deposit.  The cross-sectional 
domain has a length of 1000 m and a height of 40 m, as shown in Fig. 2.  The 
aquifer is discharged from left to right.  The deposit contacts the aquifer on the 
top over a length of 50 m, where contaminant matter is released.  The isotropic 
hydraulic conductivity is 10-4 m/s, the porosity is 0.3, the molecular diffusion is 
10-9 m2/s, the longitudinal dispersivity is 2 m, and the transverse dispersivity is 
0.1 m.  The inflow boundary has a constant influx of 0.1 m/d and the outflow 
boundary has a constant hydraulic head of 40 m.  The flow boundary condition 
of the leaking deposit has a constant influx of 0.0125 m/d.  Isopleth 
concentration contours using three levels of adaptation are shown in Fig. 3. 
Unsaturated conditions are that the volume moisture content is 0.3 and the 
volume saturation is 0.5.  Isopleth concentration contours for unsaturated 
conditions are shown in Fig. 4.  Three-dimensional results using FEFLOW for 
saturated groundwater are shown in Figs. 5 and 6 and show good agreements 
between Figs. 3 and 5, and Figs. 4 and 6, as shown in Table 1. 



 
Figure 2. Cross-section domain of a leaking contaminant deposit. 

 
Figure 3. Concentration contours from a leaked deposit with a three-level mesh 
h-adaptation in the saturated groundwater at 30 days. 
 

 
Figure 4. Concentration contours from a leaked deposit with a three-level mesh 
h-adaptation in the unsaturated groundwater at 5500 days. 
 



 
 
Figure 5. Concentration contours from a leaked deposit using FEFLOW in the 
saturated groundwater at 30 days. 
 

 
 
Figure 6. Concentration contours from a leaked deposit using FEFLOW in the 
unsaturated groundwater at 5500 days. 

 
Table 1. Comparisons between GWAdapt and FEFLOW  

for saturated and unsaturated flow 
 

GWAdapt FEFLOW 
(250m, 8m) (250m, 8m) 

 

saturated unsaturated saturated unsaturated 
Concentration 
(mg/l) 

 
0.061743 

 
0.13048 

 
0.0636 

 
0.1174 

Velocity  
(x-zdirection)(m/d) 

 
0.094938 

 
0.004016 

 
0.0978 

 
0.0043 



6 Parallel Processing – SGI Origin 2000 
 
Large-scale, 3-D flowfield and transport resolution typically require a large 
number of nodes to discretize a problem domain. The resulting computational 
effort can quickly become inhibiting when running on a single processor machine. 
A simulation modeling the transport of contaminants for long periods of time can 
require large amounts of memory and CPU time. Earlier work with a similar 
algorithm by Pepper et al20 using a MasPar 1216 SIMD computer with 16,384 
processors also showed dramatic improvement in computing speed using 
FORTRAN 90 conversion.  

The scalar version of GWADAPT was modified and rewritten to run on 
the SGI Origin 2000 parallel computer. Much of this effort required changing the 
Cholesky solver for the implicit solution of steady-state head values to be more 
efficient when running on multiple processors. After some trial and error, speed-
ups on the order of 3-4 were obtained after partitioning the solution over ten 
processors. Several implicit solvers also exist that have been optimized for the 
SGI Origin 2000; two of the solvers worth looking into are the sparse Cholesky 
solver developed by Ng21 at Oak Ridge National Laboratory and a direct solver 
developed at NASA Langley Research Center (see Storaasli22). 
 
7 Conclusion 
  
The incorporation of local mesh adaptation into finite element methods produce a 
very powerful and accurate numerical scheme for solving transport problems. 
Although the bookkeeping associated with keeping track of the refined and 
unrefined elements can be troublesome, the end result is well worth the effort. 
GWADAPT is a finite element code that uses h-adaptation to calculate 
groundwater flow and species transport in saturated or unsaturated porous media. 
The model is written in C/C++/JAVA and incorporates pre- and postprocessors 
for mesh generation and visualization of results in real time. GWADAPT can be 
accessed from the web, allowing anyone interested in using the code to quickly 
use it to model subsurface transport. GWADAPT has been shown to be very 
accurate, and is quite easy to use even though it is a very robust program.   
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