True Grid® Output Manual For NIKE3D

A Guide and a Reference

by

Robert Rainsberger

Version 2.3.0

XYZ Scientific Applications, Inc.

October 12, 2006

Copyright © 2006 by XYZ Scientific Applications, Inc. All rights reserved.

True Grid, the True Grid Output Manual for NIKE3D, and related products of XYZ Scientific Applications, Inc. are copyrighted and distributed under license agreements. Under copyright laws, they may not be copied in whole or in part without prior written approval from XYZ Scientific Applications, Inc. The license agreements further restrict use and redistribution.

XYZ Scientific Applications, Inc. makes no warranty regarding its products or their use, and reserves the right to change its products without notice. This manual is for informational purposes only, and does not represent a commitment by XYZ Scientific Applications, Inc. XYZ Scientific Applications, Inc. accepts no responsibility or liability for any errors or inaccuracies in this document or any of its products.

True Grid [®] is a registered trademark of XYZ Scientific Applications, Inc.

Some other product names appearing in this book may also be trademarks or registered trademarks of their trademark holders.

Table of Contents

Table of Con	tents		• • •	3
I. NIKE3D O	utput Guide			5
		ions		
		atures		
		ontact) Surfaces		
	•	nditions		
	•			
		Dampers and Point Masses		
		raints		
		ng		
II. Examples				. 13
_				
III. NIKE3D	Output Refer	ence		. 15
	Command Sy	ntax Conventions		. 15
	bsd	global beam cross section definition		. 15
	sid	sliding interface definition		. 17
	si	select nodes or faces for sliding interface in merge phase		. 18
	si	assign sliding interface to region in part phase		. 18
	sii	assign sliding interfaces to progression in part phase		. 19
	spd	define the properties of a set of springs or dampers		. 20
	nikemats	NIKE3D materials		. 21
	nikeopts	NIKE3D analysis options		. 32
IV. Frequent	ly Asked Que	stions		. 37
V. INDEX				. 39

4

I. NIKE3D Output Guide

Introduction

NIKE3D is a nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics developed at Lawrence Livermore National Laboratories. The focus in this manual will be on those features in **True** *Grid*[®] that are specific to creating a NIKE3D input file. The **True** *Grid*[®] User Manual covers the creation of a mesh and will not be covered in this manual. This manual is incomplete in another way because it cannot be used as a substitute for the NIKE3D manual. For a full understanding of the use of these features, the user must have a working knowledge of NIKE3D and be familiarity with the NIKE3D User Manual.

Font Conventions

Different fonts are used through out this manual to indicate their meaning. A literal is highlighted in bold. A symbol to be substituted with a literal or a number is *italicized*. A computer example uses the Courier font.

Supported Features

There are many features in **True***Grid*® to create a model for NIKE3D. The table below shows the commands that are used for each feature. Sometimes there are several commands listed. For example, shells can be generated using both the **block** and **cylinder** commands. The **n** and **th** are used to set the properties of these shells. In another example, the **si** and **sii** commands are used to identify the faces of the mesh that form the sliding (or contact) surfaces. The associated **sid** command is used to assign properties to the sliding surface.

NIKE3D feature TrueGrid® commands

nikeopts analysis options material nikemats, mate, mt, mti beam, bm, ibm, ibmi, jbm, jbmi, kbm, kmbi beam elements brick elements block, cylinder shell elements block, cylinder problem title title load curves lcd, flcd slide surface sid, si, sii

beam integration rules
shell integration rules
symmetry planes

sid, si,
bind
sind
symmetry planes

plane

stone walls plane, sw, swi

beam cross section properties bsd springs and dampers spd, spdp, spring rebar ibm, ibmi, jbm, jbmi, kbm, kmbi orient shell elements orient local material coordinate systems or nodal constraints b. bi nodal shared degrees of freedom jd, jt, mpc node print blocks npb element print blocks epb nodal forces fc, fci, fcc, fcci, fcs, fcsi prescribed velocities fv, fvi, fvc, fvci, fvs, fvsi, fvv, fvvi, fvvc, fvvci, fvvs, fvvsi distributed nodal loads ndl, ndli pressure loads on faces pr, pri pressure amplitude pramp, dom shock arrival calculations arri, dist nodal moments mom, momi fd, fdi, fdc, fdci, fds, fdsi fixed displacement boundary condition temperature profiles tepro rigid body motion rotation, velocity initial velocities ve, vei shell element thicknesses th, thi mass points pm, npm rigid node set nset, rigid quadratic brick elements quadratic linear brick elements linear

You may want to view some of the properties graphically using the **condition** (**co**) command in the merge phase. The **tmm** command can be used to calculate the mass of each part. Be sure to merge the nodes using one of the merging commands such as **stp** and, finally, use:

nike3d for the latest version of NIKE3Dnnike3d for the old NN output format,enike3d for the old EN output format, orfnike3d (same as nike3d) for the new FN output format

to select NIKE3D as the output option and the **write** command to actually create the input deck for NIKE3D.

The file produced by **True***Grid*[®] is an ASCII file that can be examined or modified using any text editor. Some experienced users always inspect the file and modify it instead to rerunning **True***Grid*[®] when make easy changes to the model such as changing a material model parameter or the time step.

For this reason, the output file has helpful comments. However, this file can be very large and it might be easier to modify the **True***Grid*[®] session file and rerun **True***Grid*[®]. One of the comments that is automatically written has a time stamp for archiving purposes. The **title** is also helpful for archiving. You can insert your own comments with the use of the **comment** command.

Sliding (or Contact) Surfaces

To form a contact surface, use the **sid** command to define the surface type. The **sid** command also has optional parameters. This surface is assigned an identification number. Other commands that assign faces or nodes to this surface do so by referencing the surface number.

While in the part phase use the **si** or **sii** commands to select faces of that part for inclusion in the surface definition. If the face is from a shell element, be sure to use the **orpt** orientation command prior to issuing the **si** or **sii** command so that the orientation of the face is towards the opposing face in the sliding surface. If you are using part replication (**lrep**, **grep**, or **pslv**), then you may want to use the **lsii** or the **gsii** to increment the sliding interface command for each replication. You must use the **sid** command for each sliding surface that is referenced when the **lsii** or **gsii** commands are used with replication.

You can use sets in the merge phase to add faces or nodes to a sliding surface. These sets can be formed with the combined use of the **fset** (for faces) and the **nset** (for nodes) commands in the part and merge phase. Only use node sets when defining a sliding surface where nodes are on the slave side and otherwise only use face sets. The node density between the master and slave sides of the interface should be roughly equal. When forming the mesh in the part phase, it may be necessary to build into the mesh a small gap between the master and slave sides of the contact surfaces, depending on the mesh density and the curvature to avoid initial penetration of the slave side into the master side.

When you merge the nodes (in the merge phase), the nodes from the slave side will not be allowed to merge with the nodes on the master side. Use the **mns** command in the merge phase to override this condition. When you fist merge the nodes, a table will be printed to the text window and the tsave file listing the number of faces and nodes associated with each sliding surface. Check this table carefully. You can also see the faces and nodes of either side of the sliding surfaces using the **co** command. When using this in combination with the hide graphics option, you can see the orientation of the faces. Use **labels** command to show how the nodes have merged graphically.

Boundary Conditions

There are several ways to constrain nodes. The **b** and **bi** commands in the part phase or the **b** command in the merge phase will constrain nodes in the global coordinate system. Use the **plane** command to specify symmetry plane constraints including symmetry planes with failure. Nodes in

the model will be assigned to these symmetry planes based on the tolerance you specify in the **plane** command.

Loads

There are numerous ways to assign loads. The list of commands that can be used to assign loads in the part phase includes:

fc	Cartesian concentrated nodal loads
fci	Cartesian concentrated nodal loads
fcc	cylindrical concentrated nodal loads
fcci	cylindrical concentrated nodal loads
fcs	spherical concentrated nodal loads
fcsi	spherical concentrated nodal loads

mom nodal moment about one of the nodal axis in the global coordinate system nodal moment about one of the nodal axis in the global coordinate system

ndl pressure converted to distributed nodal loadsndli pressure converted to distributed nodal loads

pressure loads on element faces pr pressure loads on element faces pri Cartesian prescribed nodal velocities fv Cartesian prescribed nodal velocities fvi fvc cylindrical prescribed nodal velocities fvci cylindrical prescribed nodal velocities spherical prescribed nodal velocities fvs spherical prescribed nodal velocities fysi

fvv Cartesian variable prescribed nodal velocities
 fvvi Cartesian variable prescribed nodal velocities
 fvvc cylindrical variable prescribed nodal velocities
 fvvci cylindrical variable prescribed nodal velocities
 fvvs spherical variable prescribed nodal velocities
 fvvsi spherical variable prescribed nodal velocities

fd Cartesian displacement
fdi Cartesian displacement
fdc cylindrical displacement
fdci cylindrical displacement
fds spherical displacement
fdsi spherical displacement

The list of commands that can be used to assign loads in the merge phase includes:

fc Cartesian concentrated nodal loads

mom nodal moment about one of the nodal axis in the global coordinate system

ndl pressure converted to distributed nodal loads

pr pressure loads on element facesfv Cartesian prescribed nodal velocities

fvv Cartesian variable prescribed nodal velocities

fd Cartesian displacement

Load Curves

Load curves are 2D polygonal curves or tables of amplitude vs. time data that can be created using the **lcd** and **flcd** commands. They are used to specify the magnitude and/or time variation such as boundary conditions and material properties. It is best to define a load curve before it is referenced in a load or material model to avoid a warning message. When the output file is written, if a load curve is referenced but not defined, you will also receive a warning message. Then a simple load curve will be used in the output file so that a valid NIKE3D file is written. It is advised that you correct this by defining the appropriate load curve for the problem. Do not rely on the load curve that is automatically generated.

In some dialogue boxes you might be prompted for a load curve or a set id. Simply ignore the set id portion of the prompt and supply the load curve number.

Stone Walls

A stone wall is defined with two commands. Use the **plane** command to set the properties of the stone wall. Nodes to react to the stone wall will not be selected automatically based on the tolerance. Use the **sw** and **swi** commands in the part phase to assign faces of the model to react to the stone wall. You can use the **sw** command in the merge phase as well to assign faces from a face set to react to the stone wall.

Bricks

Brick elements refer to hexahedral, prism (wedge), and tetrahedral elements. The brick element is the default element type when defining a material model using the **nikemats**. The **mate**, **mt**, and **mti** commands are used to associate a material with the elements. It is required that the type of element (brick, shell, or beam) agree with the material element type. Only one element type can associated with a material definition. If you want two different element types with the same material properties, you must define two materials. No section properties are needed for bricks.

The element local coordinate system used in an orthotropic or anisotropic material is imposed by the order of the nodes that define the element. You can flip the nodal ordering to switch the orientation of this local coordinate system using the **or** command in the part phase.

The default order of the brick elements is linear. There is an experimental version of NIKE3D that uses quadratic bricks with 20 nodes. To generate these, use the **quadratic** command before creating a part. Be sure to return to linear order with the **linear** command before generating any shells because NIKE3D does not support quadratic shells.

Shells

Shell elements refer to both quadrilateral and triangular elements and sometimes referred to as structural elements. You must specify the shell element type when defining a material with the **nikemats** command. The **mate**, **mt**, and **mti** commands are used to associate a material with the elements. It is required that the type of element (brick, shell, or beam) agree with the material element type. Only one element type can associated with a material definition. If you want two different element types with the same material properties, you must define two materials. Cross sectional properties, such as the default thickness, can be included in the material model when the shell type is selected. These default thicknesses can be overridden with the use of the **thic** command in the part phase. Both can be overridden for a region of the part using the **th** and **thi** commands. If you have two surfaces that represent the inner and outer surfaces of a structure that is to be modeled using shell elements, than you can use the **ssf** and **ssfi** commands in the part phase to create shells with variable thickness.

The orientation of the positive normal direction to the shell is dictated by the nodal ordering of the nodes that define the shell. This positive direction is used, for example, to determine the direction of a positive pressure. This direction can be flipped using the **n** command in the part phase. The order of the nodes also dictates the local material coordinate system which can be important when using an orthotropic or anisotropic material. Use the **or** command to flip the coordinate system to the desired direction. When an angle is specified for the orientation of a composite material, it is with respect to this orientation.

You may need to specify the through thickness integration points when defining a composite material. This can be done by defining an integration rule with the **sind** command. Then identify this rule in the material definition.

Beams

Three nodes are required to form a beam element. The third node is needed to define the local coordinate system used to form the cross sectional properties. These element are sometimes referred to as structural elements. Use the **ibm**, **ibmi**, **jbm**, **jbmi**, **kbm**, and **kbmi** commands to form beam elements with shell or brick structures while in the part phase. If the material of the shell or brick structure is set to zero using the **mt**, **mti**, or **mate** command, then the shells or bricks will be ignored, but the embedded beams will not be ignored. This is a convenient way to build an array of beams using block structured methods. You can also use the **bm** command in the merge phase to build a

string of beams that can be made to follow a 3D curve. The **beam** command (this command has been denigrated) can also be used to form beam elements, but the command is not interactive.

You must specify the beam element type when defining a material with the **nikemats** command. The beams elements are assigned a material number when they are formed or in the merge phase using the **mt** command. It is required that the type of element (brick, shell, or beam) agree with the material element type. Only one element type can associated with a material definition. The beam default cross section properties, such as thickness, are also defined within the material definition. You can also use the **bsd** command to define cross sectional properties to override the material default cross sectional properties. When you create a beam, refer to the **bsd** number to assign these cross sectional properties to the beam. Use the **bind** command to define a beam integration rule, if needed. Then refer to this integration rule when defining the material.

Springs and Dampers and Point Masses

Springs and dampers are treated the same in **True***Grid*[®]. They are only distinguishable by the material properties assigned them. Use the **spd** command to define the properties of the spring or damper. Then use the **spring** command to assign nodes to a numbered spring. Alternatively, the **spdp** command can be used in the part phase to create an array of springs between two parts, analogous to a contact surface.

Point masses can be generated in the part or merge phase. There are two types of point masses. The **pm** command will assign a mass to an existing node. The **npm** will create a new node and assign it a mass. The latter must then be connected either to a spring or beam.

Shared Constraints

Use the **mpc** command to couple a set of nodes. This requires that you create a node set first. The **nset** or **nseti** command can be used in the part phase and the **nset** command in the merge phase to create a node set. Also, click on the pick button in the environment window during the merge phase. Then you can use the mouse to modify or create a node set. The nodes sharing a set of constraints will not be merged together. You can also use the **jd** with the **jt** command to form multiple point constraints for a small set of nodes.

The **rigid** command in the merge phase will form rigid node sets. Use the same methods for generating a node set as described above.

Post Processing

There are a number of options of the **nikeopts** command to control the data saved in the database by NIKE3D for post processing. You may wish to analyze in greater detail the evolution of certain

II. Examples

III. NIKE3D Output Reference

The commands found here are provided to the user so that a complete input file can be generated by **True***Grid*[®]. This manual does not try to explain the meaning of these parameters. For this, the user is referred to the NIKE3D User Manual.

Command Syntax Conventions

When an arbitrarily long list of arguments are required, a semi-colon terminates the list. Sometimes the abbreviation #_things is used to mean "number of things". Each command is described by an entry like the following:

command summary description

command *arguments* brief description of functionality with brief descriptions of what the *arguments* should be.

indentation is used to indicate a list of options to the *arguments*

Some commands in the part phase require a region specification. The region selects a face of the mesh, among other things. Others may require a progression specification. The progression selects multiple faces, among other things. In the merge phase, such commands require an option. In all of these cases, a portion of the mesh is identified. For example, the **si/sii** command has this property.

Remarks

When present, the Remarks section describes the command in even greater detail. It may describe the context in which the command is normally used, and other commands used in association with this command. It may describe side effects. It may describe other, similar commands. In many cases, it includes a description of where to find the command in the menus.

Examples

When present, this shows the exact use of the command. If you use the dialogues, this command will be generated by simple selection options with the mouse and entering data where indicated. The command, as shown here, will appear in the session file for later reuse and possible modification. You can also enter the command into the text window or insert it into a command file to be run in batch mode.

bsd global beam cross section definition

bsd option_list ;

where an option can be:

sthi thicknesss-thickness at both endstthi thicknesst-thickness at both endssthi1 thicknesss-thickness at beginningsthi2 thicknesss-thickness at endingtthi1 thicknesst-thickness at beginningtthi2 thicknesst-thickness at ending

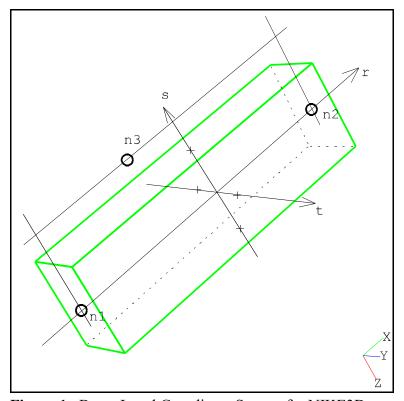


Figure 1 Beam Local Coordinate System for NIKE3D

Remarks

There are other options to this command, but they are not shown here because they do not apply to the NIKE3D output. For a complete description of the **bsd** command, see the **True***Grid*[®] User Manual.

Since there are default cross section properties provided in the definition of the material using the **nikemats** command, not all of the parameters need to be assigned through the **bsd** command.

Each cross section definition is assigned a number by you so that you can reference it when defining a set of beams with the **ibm**, **ibmi**, **jbm**, **jbmi**, **kbm**, **kbmi**, **bm**, and **beam** commands.

Example

```
bsd 2 sthi .03 tthi .03 ; ;
```

sid sliding interface definition

```
sid slide_# type options ;
  where type can be one of
       tied
                              tied sliding surface
       sl
                              sliding only
                             sliding with voids
       SV
                              single sided slide surface
       single
       dummy
                              used to insure that nodes in this interface will not be merged
  where an option can be
       fric factor
                              static coefficient of friction
       kfric friction
                              kinetic coefficient of friction
       decay decay
                              exponential decay coefficient
       bwmrad # facets
                              bandwidth minimization radius
                              sliding penalty
       pnlt factor
       pnltm factor
                              penalty factor
       penmax distance
                              small penetration search distance
       iaug flag
                              augmentation flag
                              normal direction convergence tolerance
       altoln tolerance
                              tangential direction convergence tolerance
       altolt tolerance
                              tangent stiffness multiplier
       tkmult multiplier
                              interface death time
       dtime time
       bury time
                              interface burial time
```

Remarks

Sliding interfaces or contact surfaces are constructed in 3 steps. These steps can be done in any order.

- 1. define the properties
- 2. select the slave side
- 3. select the master side, if applicable

The **sid** command is used to define the properties. The **si** and **sii** commands are used in the part phase or the merge phase to select the nodes or faces that form the master and slave sides of the interface.

When nodes are merged, nodes across a sliding interface will not be merged. When a merge command is first issued in the merge phase, a table is written listing the number of nodes and faces associated with each sliding interface.

The **dummy** type interface is actually used to avoid merging of nodes. A sliding interface of this type is not written to the output file.

The nodes and faces of a sliding interface or contact surface can be viewed in the merge phase using the **si** option of the **co** command.

If the output option has been selected prior to using the dialogue box to make a selection, only the options available to that output option will be displayed in the dialogue box.

si select nodes or faces for sliding interface in merge phase

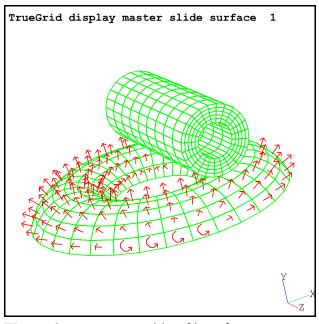
```
si option slide_# type
  where option can be one of:
       n node number
                                       select a single node
                                       select a node close to a Cartesian point
       \mathbf{rt} x y z
                                       select a node close to a cylindrical point
       cy rho theta z
       sp rho theta phi
                                       select a node close to a spherical point
       nset name_of_set
                                       select an entire node set
                                       select a face set
       fset face_set
  where type can be one of
       m
                                       master side of the interface
                                       slave side of the interface
       S
```

si assign sliding interface to region in part phase

```
si region slide_# type
where type can be one of
m master side of the interface
s slave side of the interface
```

Remarks

Care is needed to be sure that the outward normal of the facet off each side of the interface is pointing towards the opposite side. Use the **orpt** prior to issuing this commands for this purpose.


sii assign sliding interfaces to progression in part phase

```
    sii progression slide_# type
    where type can be one of
    m master side of the interface
    s slave side of the interface
```

Examples

A model was created by the use of the following command file. Some normals are displayed as circular arcs with arrows. This is caused by the normals pointing almost orthogonally from the screen. There is an angle parameter in the **co** command setting the range of such behavior. You can modify it, or totally disable it.

```
c Sliding Interface -> master side
c Part definition -> shells.
block 1 3 5 7 9; -1; 1 3 5 7 9; 0 2 4 6 8; 9 ; 0 2 4 6 8;
c Definition of orientation point in Cartesian coord x,y, and z
orpt - 9 0 9
c Definition of the type of the sliding interface
sid 1 sv ;
c Assignment of region (;-1;;) and type (1 m) of slid. interf.
sii ;-1;; 1 m
c Definition of 3 global transformations around y-axis
gct 3 ry 90; ry 180; ry 270; c for 90,180 and 270 degrees.
c Global replication 3 times by rotation for
grep 0 1 2 3; 90,180 and 270 degrees
c Cylinder part -> tube made from hexahedrons.
cylinder 1 6; 1 3 5 7 9 11 13 15 17 19 21 23 25; 1 10;
     2 4;0 30 60 90 120 150 180 210 240 270 300 330 360;0 20;
c Definition of the orientation point in the default coordinate
c system of the part (in Cylindrical coordinates r,eta,z).
orpt - 0 20 5
c Assignment of region (-2;i) and type (1 s) of slid. interf.
sii -2;;; 1 s
c Assignment of region (;;-1;) and type (1 s) of slid. interf.
sii ;;-1; 1 s
c Assignment of region (;;-1;) and type (1 s) of slid. interf.
sii ;;-2; 1 s
lct 1 my 20 ; c Definition of the local transformation
lrep 1;
              c Transformation 1 is applied.
merge
labels size 3
                   c Scale the size of arrows.
```

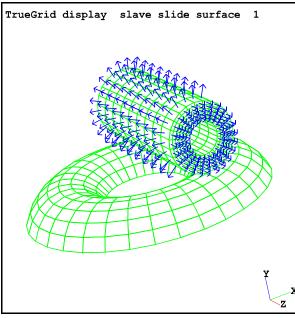



Figure 2 master side of interface

Figure 3 slave side of interface

Remarks

Care is needed to be sure that the outward normal of the facet off each side of the interface is pointing towards the opposite side. Use the **orpt** prior to issuing this commands for this purpose.

spd define the properties of a set of springs or dampers

iep elastic tangent yieldisotropic elasticne ld_curve_#nonlinear elasticnv ld_curve_#nonlinear viscous

nesf *ld_curve_# force_curve_#* nonlinear elastic w/ force load curve gn loading_# unloading_# hardening tension compression general nonlinear

Remarks

A spring or damper is defined using either the **spdp** command forming a set of springs/dampers between two surfaces, or using the **spring** command to create a single spring at a time. In each case, the definition of a spring includes a reference to a material definition **spd** number.

If the output option has been selected prior to using the dialogue box to make a selection, only the options available to that output option will be displayed in the dialogue box.

nikemats NIKE3D materials

```
nikemats material_# material_type options parameter_list;
  where the following options are available for all materials:
       shell features
                                     shell element type
          where a feature can be
              shear factor
              tsti #_points
              propt option
                 where option can be
                      1
                                     for element center
                      2
                                     for plan integration points
                      3
                                     for through thickness and plan integration points
              quad integration_rule_#
                 where the integration rule # can be
                                     positive for the number of points using the trapezoidal rule
                      n
                      0
                                     negative of the user specified rule number (sind)
                      -n
              shth thickness
              shth1 thickness
              shth2 thickness
              shth3 thickness
              shth4 thickness
              shloc location
                 where location can be
                      1
                                     for top surface
                                     for middle surface
                      0
                                     for bottom surface
                      -1
                                            beam element type
       beam features
```

```
where a feature can be
       shear factor
       quad option
         where the option can be
                             a truss
              2
                             2x2 Gauss quadrature
              3
                             3x3 Gauss quadrature
              4
                             3x3 Lobatto integration
              5
                             4x4 Gauss quadrature
       bmcross shape
         where the shape can be
                             rectangular
                             tubular
       sthi thickness
       tthi thickness
       sthi1 thickness
       sthi2 thickness
       tthi1 thickness
       tthi2 thickness
       sloc location
         where location can be
                             meaning the side where s is 1
              1
              0
                             meaning centered
                             meaning the side where s is -1
              -1
       tloc location
         where location can be
              1
                             meaning the side where t is 1
                             meaning centered
              0
                             meaning the side where t is -1
              -1
rho density
rda constant
rdb constant
```

where the *parameter_list* is specific to the selected material type and are listed accordingly below:

```
Elastic - Material type 1
```

e modulus Young's modulus **pr** ratio Poisson's ratio

Orthotropic Elastic - Material type 2

ea ea constitutive matrix coefficient eb eb constitutive matrix coefficient

ec ecconstitutive matrix coefficientprba vbaconstitutive matrix coefficientprca vcaconstitutive matrix coefficientprcb vcbconstitutive matrix coefficientgab gabconstitutive matrix coefficientgbc gbcconstitutive matrix coefficientgca gcaconstitutive matrix coefficient

aopt option parameters for material orientation

where the option can be one of

0 by nodes

1 by point and element center

2 by normal vectors

where the *parameters* can be

xp *x-coordinate* used with aopt 1 **yp** *y-coordinate* used with aopt 1 **zp** *z-coordinate* used with aopt 1 **ax** x-component used with aopt 2 ay y-component used with aopt 2 az z-component used with aopt 2 dx x-component used with aopt 2 dy y-component used with aopt 2 **dz** *z-component* used with aopt 2

Elastic-Plastic - Material type 3

e modulus
pr ratio
sigy stress
Young's modulus
Poisson's ratio
yield stress

etan modulushardening modulusbeta parameterhardening parameteres strain_list;effective plastic straineps stress_list;effective plastic stress

Thermo-Elastic-Plastic - Material type 4

temp temperature_list; list of temperature
e modulus_list; list of Young's modulus
pr ratio_list; list of Poisson's ratio

alpha secant_list; list of secant coefficient of thermal expansion

sigy stress_list; list of yield stress

etan modulus_list; list of plastic hardening modulus

Soil And Crushable Foam - Material type 5

g modulus shear modulus

ku modulus bulk unloading modulus

a0 yield yield function a1 yield yield function a2 yield yield function **pc** pressure minimum pressure

ul option unloading

where option can be

volumetric crushing 1 no volumetric crushing volumetric strain table vs strain_list;

pressure table **ps** pressure_list;

ViscoElastic - Material type 6

k modulus bulk modulus

short time shear modulus **g0** modulus long time shear modulus **gi** modulus

beta decay decay constant

Thermo-Orthotropic - Material type 7

ea modulus young's modulus in a-direction **eb** modulus Young's modulus in b-direction Young's modulus in c-direction ec modulus **prba** ratio Poisson's ratio in ab-direction Poisson's ratio in ac-direction prca ratio prcb ratio Poisson's ratio in bc-direction

alpa expansion thermal expansion coefficient in a-direction **alpb** expansion thermal expansion coefficient in b-direction **alpc** expansion thermal expansion coefficient in c-direction

shear modulus in ab-direction **gab** modulus **gbc** modulus shear modulus in bc-direction gca modulus shear modulus in ca-direction

aopt option parameters material orientation

where the option can be one of

0 by nodes

1 by point and element center

by normal vectors 2

where the *parameters* can be

xp *x-coordinate* used with aopt 1 **yp** *y-coordinate* used with aopt 1 **zp** *z-coordinate* used with aopt 1 **ax** x-component used with aopt 2 ay y-component used with aopt 2 az z-componentused with aopt 2dx x-componentused with aopt 2dy y-componentused with aopt 2dz z-componentused with aopt 2

Thermo-Elastic-Creep - Material type 8

temp temperature_list; list of temperatures
g modulus_list; list of shear modulus
k modulus_list; list of bulk modulus

alpha secant_list; list of secant coefficients of thermal expansion

a creep_list;b creep_list;list of first creep parameterslist of second creep parameters

Power Law Plasticity - Material type 9

e modulus
pr ratio
k strength
n hardening
Young's modulus
Poisson's ratio
strength coefficient
hardening exponent

Power Law Thermo-Elastic-Plastic - Material type 10

temp temperaturetemperaturee modulusYoung's moduluspr ratioPoisson's ratio

alpha expansion tangent coefficient of thermal expansion

k strengthstrength coefficientn exponenthardening exponent

Transient Thermal Creep - Material type 11

pr ratioPoisson's ration exponentstress exponenttemp temperaturetemperaturee modulusYoung's modulusa stressstress coefficientm exponenttime exponent

alpha coefficient secant coefficient of thermal expansion

Ramberg-Osgood Elastoplastic - Material type 12

gammay strainreference shear straintauy stressreference shear stressalpha coefficientstress coefficientr exponentstress exponentk modulusbulk modulus

```
General Anisotropic Thermal-Elastic - Material type 13
       matrix c11 c12 c13 c14 c15 c16
                                           compliance matrix
                  c22 c23 c24 c25 c26
                       c33 c34 c35 c36
                          c44 c45 c46
                              c55 c56
                                   c66
       alpha1 expansion
                                    thermal expansion coefficient in a-direction
                                    thermal expansion coefficient in b-direction
       alpha2 expansion
       alpha3 expansion
                                    thermal expansion coefficient in c-direction
       aopt option parameters
                                    material orientation
         where the option can be one of
              0
                                    by nodes
              1
                                    by point and element center
                                    by normal vectors
         where the parameters can be
              xp x-coordinate
                                    used with aopt 1
              yp y-coordinate
                                    used with aopt 1
              zp z-coordinate
                                    used with aopt 1
              ax x-component
                                    used with aopt 2
              av v-component
                                    used with aopt 2
                                    used with aopt 2
              az z-component
                                    used with aopt 2
              dx x-component
              dy y-component
                                    used with aopt 2
              dz z-component
                                    used with aopt 2
Oriented Brittle Damage - Material type 14
                                    Young's modulus
       e modulus
       pr ratio
                                    Poisson's ratio
       ft strength
                                    tensile strength
                                    cracked shear strength
       fs strength
       sigy strength
                                    compressive yield strength
                                    fracture toughness
       gc toughness
       beta factor
                                    shear retention factor
       eta viscosity
                                    viscosity
Mooney-Rivlin Rubber - Material type 15
       ai term
                                    coefficient of first invariant term, a
                                    coefficient of second invariant term, b
       bi term
                                    Poisson's ratio
       pr ratio
       aflg option
                                    augmented Lagrangian flag
         where option can be
```

off

1 tolerance on with convergence tolerance

Thermo-Plastic Melt - Material type 16

lcyt load_curve Young's modulus load curve Poisson's ratio load curve **lypt** *load_curve* **lyet** load curve thermal expansion load curve

fsm option flow strength model

where an option can be

1 feature

where a feature can be

bulk modulus bulk modulus

yield stress load curve **lcvst** load curve lcptt load_curve plastic tangent load curve

2 feature

where a feature can be

bulk modulus bulk modulus

lcist load curve initial strength load curve flow strength load curve **lcfst** *load_curve* **lcsrt** load curve strain rate load curve

lcscbt *load_curve* strengthening coef load curve **lcsent** load curve strengthening exp load curve

3 feature

where a *feature* can be

bulk modulus bulk modulus

lcist load curve initial strength load curve **lcfst** *load_curve* flow strength load curve **lcsrt** *load_curve* strain rate load curve

lcsck1t load curve strengthening coef load curve **lcsen1t** load curve strengthening exp load curve recovery coef load curve lcrck2t load curve lcfren2t load_curve first recovery coef load curve second recovery coef load curve lcsren3t load_curve

ffm option

fluid flow model

where an option can be

0

1 feature

where a feature can be

lcfvt load curve fluid viscosity load curve

vgm option void growth model

where an option can be

```
1 features
                 where a feature can be
                                             initial void strain
                      ivs strain
                                             tensile pressure load curve
                      lctpt load_curve
                                             compressive pressure load curve
                      lccpt load_curve
                      cemf flag
                         where flag can be
                              0
                                             off
                              1
                                             on
              2 features
                 where a feature can be
                      ivs strain
                                             initial void strain
                                             first gurson parameter
                      g1 parameter
                                             second gurson parameter
                      g2 parameter
                      cemf switch
                         where switch can be
                                             off
                              0
                              1
                                             on
       lsm option
                                             liquid-solid transition model
          where an option can be
              0
               1 feature
                 where a feature can be
                      lcfsft load_curve
                                             fraction solid load curve
                                             variable written to plot database
       vardb option
          where option can be
              0
                                             effective plastic strain
              1
                                             void strain
              2
                                             flow strength
              3
                                             effective strain rate
Foundation Boundary Spring - Material type 17
       matrix k11 k12 k13 k14 k15 k16
                                             full upper-triangular stiffness matrix
                   k22 k23 k24 k25 k26
                       k33 k34 k35 k36
                            k44 k45 k46
                                k55 k56
                                     k66
Transversely Isotropic Hyperelasticity - Material type 18
```

Mooney-rivlin coefficient

c1 constant

c2 constant Mooney-rivlin coefficient c3 stress exponential stress coefficient **c4** *uncrimping* fiber uncrimping coefficient, modulus of straightened fibers c5 modulus

k modulus bulk modulus

lambda stretch fiber stretch for straightened fibers

initial stretch flag isf option

where the option can be

0 off 1 on

lcis load curve initial stretch load curve aflg option augmented Lagrangian flag

where the option can be

off 1 on

altol tolerance tolerance for augmented Lagrangian iterations, only for aflg=1

Strain Rate Sensitive Power Law Plasticity - Material type 19

e modulus Young's modulus Poisson's ratio pr ratio strength coefficient **sck** strength hardening exponent hen exponent

strain rate sensitivity exponent srsem exponent

initial strain rate isr rate

Rigid Body - Material type 20

e modulus Young's modulus Poisson's ratio **pr** ratio

x-translation. boundary condition code xtrans x y-translation boundary condition code vtrans v ztrans z z-translation boundary condition code x-rotation boundary condition code $\mathbf{xrot} \, \mathbf{x}$ y-rotation boundary condition code yrot y z-rotation boundary condition code zrot z

comflg option

where option can be

0

1 x y z

x,y,z coordinates of center of mass

Thermo-Orthotropic Elastic Laminate for material 23

list of orthotropic constants **ea** *ea_list* ; list of orthotropic constants eb eb list;

```
ec ec_list ;
                               list of orthotropic constants
vba vba_list ;
                               list of orthotropic constants
vca vca_list;
                               list of orthotropic constants
vcb vcb list;
                               list of orthotropic constants
aa aa_list ;
                               list of orthotropic constants
                               list of orthotropic constants
ab ab_list ;
ac ac_list;
                               list of orthotropic constants
gab gab_list;
                               list of orthotropic constants
gbc gbc_list ;
                               list of orthotropic constants
gca gca_list;
                               list of orthotropic constants
                               list of temperatures
t temperature_list;
angles angle_list;
                               list of material angles at integration points
aopt option parameters
                               for material orientation
  where the option can be one of
                               for by nodes
       1
                               for by point and element center
       2
                               for by normal vectors
```

where the parameters can be

xp *x-coordinate* for aopt 1 **yp** *y-coordinate* for aopt 1 **zp** *z-coordinate* for aopt 1 **ax** x-component for aopt 2 ay y-component for aopt 2 az z-component for aopt 2 for aopt 2 dx x-component dy y-component for aopt 2 dz z-component for aopt 2

Elastic-Plastic with Forming Limit Diagram for material 35

e young's_modulus
pr poisson's_ratio
sg0 yield_stress

Young's Modulus
Poisson's Ratio
yield Stress

lexe load_curve tangent modulus load curve

lclh load_curveleft side load curvelcrh load_curveright side load curvelcrx load_curvepressure load curvelcedf load_curvefld rate load curvelcedm load_curveyield stress load curve

eptr straintransient strainepf straineffective strainscldev factorfailure scale factor

Remarks

You must specify the element type when defining a material with the **nikemats** command. The **mate**, mt, and mti commands are used to associate a material with the elements. It is required that the type of element (brick, shell, or beam) agree with the material element type. Only one element type can associated with a material definition. If you want two different element types with the same material properties, you must define two materials.

Examples

```
nikemats 2 4
          temp 10 250 400 890;
          e 17e6 18e6 19e6 20e6;
          pr .31 .315 .317 .32;
          alpha 4.6e-6 5.3e-6 7.9e-6 10.4e-6;
          etan 8.73e5 8.74e5 8.91e5 9.03e5;
          sigy 4.9e4 2.6e4 2.1e4 1.1e4;;
nikemats 5 1
          shell
          e 2.e11
          pr .3
          shloc 0
          tsti 2 shth 0.025 ;
nikemats 1 1
          mhead elastic material
          beam shear 1.15
          quad 1
          bmcross 1
          rho 1.12e-4
          sthi .015 tthi .021
          e 1.71e7
          pr .311
          mrt 20 ;
nikemats 20 20
     rho 4.46e-03
     p31 114.0e+03
    p41 0.340e+00
    p51 -1.0
    p52 -1.0
    p53 -1.0
    p54 -1.0
     p55 -1.0
    p56 -1.0 ;
```

```
nikemats 7 1 c Titanium alloy 6A14V rho 4.46e-03 c 0.00446 g/mm3 e 114.0e+03 c 114 GPa pr 0.34a;
```

nikeopts NIKE3D analysis options

```
nikeopts options
  where an option can be
       accflg option
                                    select the acceleration data dump option
         where the option can be
              0
                                    no acceleration in the plot file
              1
                                    include relative acceleration data
              2
                                    include absolute acceleration data
       altol tolerance
                                    set the convergence tolerance on augmented Lagrangian
       anal type
                                    type of analysis
         where type can be
              stat
                                    static
              dyn,
                                    dynamic analysis
                                    dynamic analysis with stresses initialized statically
              dyns
                                    arc length damping
       arcl arc_length
       arclcm method
                                    arc length constraint method
         where method can be
              crisfield
              ramm
       arcldamp
                                    arc length damping
                                    automatic time step control invoked
       auto
                                    select the beam element formulation
       bef flag
         where flag can be
              1
                                    Hughes-Liu out of core
              11
                                    Hughes-Liu in core
                                    set the beam element geometric stiffness flag
       begs 2
                                    BFGS update vectors storage option
       bfgscore
                                    brick element formulation
       bfor formulation
         where formulation can be
              0
                                    B-bar
              1
                                    B-bar with incompatible modes
              10
                                    B-bar in core
                                    B-bar with incompatible modes in core
              11
       brstif
                                    brick element geometric stiffness included
```

bwmo <i>toggle</i> where <i>toggle</i> can be	bandwidth minimization
on	
off	
cost	alternative automatic step control
dctol tolerance	displacement convergence tolerance
delt time	time step
dispnode node_#	node number for displacement controlled arc length method
dispdir direction	direction of displacement at node for arc length control
where <i>direction</i> can be	
1	global x-direction
2	global y-direction
3	global z-direction
ectol tolerance	energy convergence tolerance
fixed	fixed time step size
ictol tolerance	iteration convergence tolerance
igapfg flag	interface gap plot file
where <i>flag</i> can be	
0	do not overwrite y-velocity data
1	overwrite y-velocity data with nodal gap data
ilsbuf buffer_size	out of core linear solver buffer size
iobuf buffer_size	buffer size (words) for element data I/O
iplt dump_interval	TUARUS dump interval
iprt dump_interval	print dump interval
itewin size	size of the iteration window
islvdt 2	iterative solver data storage on disk
lsolver method	linear equation solver
where <i>method</i> can be	
fissle	direct solution with FISSLE
scaling	iterative solution with diagonal scaling
crout	iterative solution with Crout Element-By-Element
gs	iterative solution with Gauss-Seidel EBE
cholesky	iterative solution with Cholesky EBE
Istol tolerance	line search convergence tolerance
maxaug #_iterations	maximum augmented Lagrangian iterations
mem percent	maximum memory
mnss min_step	minimum allowable step size
msrf max_#_step	maximum number of reform/time steps
munload method	arc length unloading method which can be
where <i>method</i> can be	DECC
bfgs	BFGS
broy	Broyden

dfp Davidon-Fletcher-Powell dav Davidon mnewt modified Newton **mxitls** *max* # *iterations* iteration limit for linear solver **mxnre** *max*_#_*retries* maximum number of retries allowable per step mxss max_step_size maximum allowable step size number of steps between equilibrium iterations **nbei** #_steps nbsr #_steps number of steps between matrix reformations **neig** # eigenvectors number of eigenvectors **nibsr** *max_#_iterations* maximum number of equilibrium iter./matrix reform first Newmark integration parameter **nip1** coefficient second Newmark integration parameter nip2 coefficient **ngrav** x_acceleration load_curve gravity v acceleration load curve *z_acceleration load_curve* noarclda no arc length damping nrest # steps number of time steps between restart file generation nsbrr # steps number of time steps between running restarts nsmd method nonlinear solution method which can be where method can be bfgs. BFGS (default) broy Broyden Davidon-Fletcher-Powell dfp modified Davidon mdav modified Newton mnewt marc modified constant arc length modified constant arc length with line search mcls modified constant arc length with BFGS mabfgs, modified constant arc length with Broyden mabroy modified constant arc length with DFP madfp mambfgs modified constant arc length with modified BFGS maday modified constant arc length with Davidon newt full Newton full Newton with line search newtls nsteps #_steps number of time steps nunload #_steps number of unloading steps in modified arc length method opnit #_iterations optimal number of iterations per step prlis flag linear iterative solver print-out flag with values where *flag* is 0 no inner loop information 1 time step convergence information 2 iteration norm information

3	residual input, solution output
4	residual/solution each iteration
rail	alternative automatic step control
retol tolerance	set the convergence tolerance on residual norm
segs flag	
where <i>flag</i> can be	
0	neglect
1	include
sfor formulation	
where formulation can be	
1	Hughes-Liu
2	Yase
3	Belytschko-Tsay
4	Hughes-Liu with membrane thinning
5	hyperelastic Hughes-Liu
11	Hughes-Liu in core
12	Yase in corre
13	Belytschko-Tsay in core
14	Hughes-Liu with membrane thinning in core
15	hyperelastic Hughes-Liu in core
shift freqency	frequency shift
ssdm	shell surface strain data dumps
stifcore	stiffness matrix storage option
sw3	toggle the default sense switch number 3
sw6	toggle the default sense switch number 6
sw7	toggle the default sense switch number 7
teo value	thermal effects option
xvel load	load due to x-angular velocity
yvel load	load due to y-angular velocity
zvel load	load due to z-angular velocity

Remarks

Examples

nikeopts

auto nsteps 20 delt 0.05 mxss 0.05 iprt 999 iplt 1 msrf 15

```
dctol 0.0015
ectol 0.0015
anal stat
nsmd bfgs
bfgscore
bfor 10
bwmo on
sw3
swб
nbsr 1
nbei 1
nibsr 10
stifcore 1
maxmem 0
lsolver fissle
nrest 999
nsbrr 0;
```

nikeopts

nsteps 10
delt .2
teo 1
mxnre 25
opnit 11
mnss .001
mxss .2
iprt 999
sw6
bwmo on
anal stat;

nikeopts

nsteps 1
delt 1
bwmo on
anal stat
maxmem 100.
stifcore 1
bfgscore sfor 0
segs 1;

IV. Frequently Asked Questions

1. How do I create an output deck for NIKE3D?
Go to the merge phase, issue a merge command, such as stp, issue the nike3d command followed by the write command.

		XYZ Scientific Applications, Inc. All Rights Reserved
38	October 12, 2006	True Grid® Output Manual For NIKE3D

V. INDEX

a	begs
A0	beta
A1	Bfgs
A2	Bfor
Aa	bi
Ab30	Bind 5, 11
Ac	Block 5
Accflg	Bm 5, 10, 17
Aflg	beam cross section
Ai	Bmcross
Alpa 24	Bold
Alpb	syntax 5
Alpc	Boundary conditions
alpha	si
Alpha1	Bricks 5, 6, 9, 10
Alpha2 26	Broy
Alpha3	Brstif
Altol	Bsd 6, 11, 15, 16
Altoln	Bulk
Altolt	Bury
anal	Bwmo
Analysis 5	Bwmrad
angles	C1
Anisotropic	C2
Anisotropic	C3
1 , , , ,	C4
Archive	
Arcl	C5
Arclem	Cemf
Arcldamp	Cholesky
Arri 6	Co
auto	si
ax	Comflg
ay	Command
az	Comment
b	Concentrated loads 8, 9
beam 5, 10, 11, 17, 21	Condition 6
beam cross section	si
Beam cross section	Constraints
Beam thickness	Contact Surface 5, 7, 17
Beams	faces
Bef	gap

graphics	Dyn
initial penetration 7	Dyns
1	Dz
merged nodes	
mesh density 7	e
orientation	ea
replication	eb
sets	Ec
table	Ectol
type	Element history
Contact surfaces	EN 6
sii	Enike3d 6
Cost	Epb 6, 12
Crisfield	Epf
Cross section 6, 10, 11, 16	1
	Eps
Crout	Eptr
Cy	Es
Cylinder 5	Eta
Damper	Etan
Dampers 6	Examples
Data base	Face sets
Database	Fc
	, ,
Dav	Fcc
Dctol	Fcci
Decay	Fci
Default	Fcs
Delt	Fcsi
Dfgscore	Fd 6, 8, 9
Dfp	Fdc
Dialogue box	Fdci 6. 8
-	
sid	Fdi
spd	Fds
Dispdir	Fdsi 6, 8
Displacement	Ffm
Displacements 6	Fissle
Dispnode	Fixed
Dist 6	Fled
Distributed loads 6, 8, 9	· ·
	FN
Don	Fnike3d 6
Dtime	Force 6
Dummy	Formats 6
Dummy interface	Fric
Dx	Friction
Dy	Fs
Dy	10

Fset	Iplt
Fsm	Iprt
Ft	Isf
Fv 6, 8, 9	Islvdt2
Fvc	Isolver
Fvci	Isr
Fvi	Istol
Fvs	Italicized
Fvsi	syntax
Fvv	Itewin
Fvvc	Ivs
Fvvci	Jbm 5, 6, 10, 17
Fvvi	beam cross section
Fvvs	Jbmi 5, 6, 10, 17
Fvvsi	beam cross section
g 23, 25	Jd
G024	Jt 6, 11
G1	K
G2	Kbm 5, 6, 10, 17
gab 23, 24, 30	beam cross section
Gammay	Kbmi
Gbc	beam cross section
Gc	Kfric
Gca	Kmbi5
Gi 24	Ku
Gn	Lamdba
Grep 7	Lccpt
Gs	Lcd 5, 9
Gsii	Lcedf
hen	Lcedm
Hexahedral	Lcen1t
Iaug	Lcfren2t
Ibm 5, 6, 10, 17	Lcfsft
beam cross section 17	Lcfst
Ibmi 5, 6, 10, 17	Lefvt
beam cross section 17	Lcis
Ictol	Leist
Iep	Lclh
Igapfg	Leptt
Ilsbuf	Lerck2t
Integration points	Lerh
Integration rules 5	Lcrx
Iobuf	Lesebt

Lesck1t	Momi
Lcsent	Mpc
Lcsren3t	Msrf
Lcsrt	Mt 5, 9-11, 31
Lctpt	Mti 5, 9, 10, 31
Lexe	Multiple point constraints
Lcyst	Munload
Lcyt	Mxitls
Le	Mxnre
Linear 6, 10	Mxss
Load curves 5, 9	N 6, 10, 18, 25
Lrep 7	shell orientation 5
Lsii	Nbei
Lsm	Nbsr 34
Lv	Ndl 6, 8, 9
Lyet	Ndli 6, 8
Lypt	Ne
M	Neig
Mabfgs	Nesf
Mabroy	Newt
Maday	Newtls
Madfp	Ngrav
Mambfgs	Nibsr
Marc	Nike3d 6
Mass points 6	Nikemats 5, 9-11, 16, 21, 31
Mate 5, 9, 10, 31	Nikeopts 5, 11, 32
Material	Nip1 34
coordinate system 9, 10	Nip2
Material system	NN 6
matrix	Nnike3d 6
Maxaug	Noarclda
Mcls	Nodal constraints 6
Mdav 34	Nodal force 6
Mem	Nodal history 6
Merge	Nodal merging
dummy interface	Node set
Merged nodes	Node sets 6, 7
Mesh density	Normal
Mnewt	Normal vector
Mns	Npb
Mnss	Npm
Mom	Nrest
Moments 6, 8, 9	Nsbrr

Nset 6, 7, 11, 18	Ramm
Nseti	Rda
	Rdb
Nsmd	
Nsteps	Rebar
Nunload	Region
Nv	Remarks
Off	Replication
On	Retol
Opnit	Rho
Or	Rigid 6, 11
Orientation 6, 7, 9, 10, 18, 20	Rigid motion
Orpt	Rigid node set
Orthotropic	Rotation 6
Output formats 6	Rt
Parts	S
Pc	Scaling
Penmax	Sck
Plane	Scldev
Pm	Segs
Pnlt	Set ID
Pnltm	Sets 6
Point mass	Sfor
Point masses 6	Sg0
Post processing	Shared constraints 6, 11
Pr	shear
Pramp	shell
±	
Prba	Shell normal 6 Shell orientation
Prca	
Prcb	Shell thickness
Pressure	Shells
Pri	shift
Print blocks	Shloc
Prism 9	Shock arrival
Prlis	Shth
Progression	Shth1 21
Propt	Shth2
Ps	Shth3
Pslv	Shth4
quad 21, 22	Si
Quadratic 6, 10	sid
Quadrilateral	Sid 5, 7, 17
R	with si and sii 17
Rail	Sigy

Sii	dummy interface
Siid	Sv
Sind 5, 10	Sw
Single	Sw3
Sl	Sw6
Slide lines	Sw7
Sliding interface	Swi
display 19	Symmetry
dummy interface	Symmetry plane 5
si	T
sii	dummy interface
Sliding Surface 5, 7	Tauy
faces	temp
gap 7	Temperature 6
graphics	Teo
initial penetration	Tepro 6
merged nodes	Tetrahedral
mesh density	Th 5, 6, 10
orientation	Thi 6, 10
replication	Thic
sets	Thickness 6, 10, 16
table 7	Tied
type	Tied contact
Sloc	Time history
Sp	Time stamp
Spd 6, 11, 20	Title
Spdp 6, 11	Tkmult
spd	Tloc
Spring 6, 11	tmm
properties	
spd	Tp dummy interface
Springs 6	Triangle
Srsem	Tsti
Ssdm	Tthi
Ssf	Tthi1
Ssfi	Tthi2
stat	Ul
Sthi	Vardb
Sthi1	Variable thickness
Sthi2	Variable velocity
Stifcore	Vba
Stone wall	Vca
Stp 6	Vcb 30

Ve 6
Vei
Velocities 6, 8, 9
Velocity 6
Vgm
Vs
Wedge9
Write 6
Xp
Xrot
Xtrans
Xvel
Yp
Yrot
Ytrans
Yvel
Zp 23, 24, 26, 30
Zrot
Ztrans
Zvel