TrueGrid®Output Manual For ABAQUS®

A Guide and a Reference

by

Robert Rainsberger

Version 2.3.0

XYZ Scientific Applications, Inc.

May 8, 2009

Copyright © 2006 by XYZ Scientific Applications, Inc. All rights reserved.

True*Grid*,[®] the **True***Grid*[®] Output Manual for ABAQUS[®], and related products of XYZ Scientific Applications, Inc. are copyrighted and distributed under license agreements. Under copyright laws, they may not be copied in whole or in part without prior written approval from XYZ Scientific Applications, Inc. The license agreements further restrict use and redistribution.

XYZ Scientific Applications, Inc. makes no warranty regarding its products or their use, and reserves the right to change its products without notice. This manual is for informational purposes only, and does not represent a commitment by XYZ Scientific Applications, Inc. XYZ Scientific Applications, Inc. accepts no responsibility or liability for any errors or inaccuracies in this document or any of its products.

TrueGrid [®] is a registered trademark of XYZ Scientific Applications, Inc.

ABAQUS® is a registered trademark of ABAQUS, Inc.

Some other product names appearing in this book may also be trademarks or registered trademarks of their trademark holders.

Table of Contents

Table of Contents	
	Cutta
I. ADAQUS' Uuiput	
Follt CC	tod Eastures
Suppor	
Steps .	(on Contract) Symfacoo
Shallg Initial a	(of Contact) Surfaces
Initial a	
Loads	
Luau C Drieka	urves
Shalla	
Booma	
Deallis Point M	13 Instag
I Ullit IV. Shared	Constraints 13
Post Pr	$\frac{11}{14}$
1050110	Jeessing
IL ABAOUS [®] Exam	le 15
In The Taylor Lang	,
III. ABAOUS [®] Outpu	It Reference 17
Comma	and Syntax Conventions
abagma	ABAOUS [®] materials
abaqste	p ABAOUS [®] analysis step
bm	create a string of beam elements (merge phase)
bsd	global beam cross section definition
ibm	generate beams in the i-direction
ibmi	generate beams in the i-direction by index progression
jbm	generate beams in the j-direction
jbmi	generate beams in the j-direction by index progression
kbm	generate beams in the k-direction
kbmi	generate beams in the k-direction by index progression
npm	creates a node with a point mass (part phase)
npm	creates a new node and assigns a point mass to it (merge phase)
offset	add offset to numbered entities in the output
plane	define a boundary plane 48
pm	point mass to a vertex of the present part (part phase) 49
pm	assigns a point mass to a node of the mesh (merge phase) 50

5	sid	sliding interface definition
5	si	assign sliding interface to region (part phase)
5	si	select nodes or faces for a sliding interface (assembly phase) 52
\$	sii	assign sliding interfaces (part phase)
IV. INDEX		

I. ABAQUS[®] Output Guide

This manual teaches the use of **True***Grid*[®] when applied to a model to serve as input to the ABAQUS[®] finite element simulation code. More specifically, this manual discusses the use of commands in **True***Grid*[®] to produce material models, element types, boundary conditions, loads, procedures, steps, postprocessing options, and contact (sliding) surfaces that are uniquely designed for the ABAQUS output option in **True***Grid*[®]. The meaning and purpose of these features within ABAQUS are not discussed here and this manual is not a substitute for the ABAQUS User's Manual. You should have some familiarity with the use of ABAQUS when using the features discussed in this manual. Also, the generic generation of the geometric model is covered extensively in the **True***Grid*[®] User's Manual and is not repeated here.

Font Conventions

Different fonts are used through out this manual to indicate their meaning. A literal is highlighted in bold. A symbol to be substituted with a literal or a number is *italicized*. A computer example uses the Courier font. A button in from the Graphical User Interface is both *italic and bold*.

Supported Features

There are many features in **True***Grid*[®] to create a complete model for ABAQUS. The table below shows the commands that are used for each feature. Sometimes there are several commands listed. For example, shells can be generated using both the **block** and **cylinder** commands. The **n** and **th** are used to set the properties of these shells. In another example, the **si** and **sii** commands are used to identify the faces of the mesh that form the sliding (or contact) surfaces. The associated **sid** command is used to assign properties to the sliding surface.

ABAQUS feature <u>True<i>Grid</i>[®] commands</u>	
title to the problem title	
2 nd order elements quadratic	
1 st order elements linear	
beams bsd, ibm, ibmi, jbm, jbmi, k	bm, kbmi, bm
assign material properties mt, mti, mate, mtv, abaqmat	S
nodal constraints b , bi , plane	
symmetry plane	
rigid body rotation rotation	
rigid body velocity velocity	
initial velocities ve, vei	
amplitude curves lcd, flcd	

shared nodal degrees of freedom	jd, jt
contact (sliding) interface	sid, si, sii
default initial nodal temperature	temp
initial nodal temperatures	tm, tmi
pressure faces	pr, pri
pressure amplitude	pramp, dom
concentrated nodal forces	fc, fci, fcc, fcci, fcs, fcsi
nodal displacements	fd, fdi, fdc, fdci, fds, fdsi
nodal velocities	fv, fvi, fvc, fvci, fvs, fvsi, fvv, fvvi, fvvc,
	fvvci, fvvs, fvvsi
nodal temperatures	ft, fti,vft, vfti
nodal accelerations	acc, acci, accc, accci, accs, accsi, vacc, vacci,
	vaccc, vaccci, vaccs, vaccsi
nodal moments	mom, momi
nodal mass	pm, npm
nodal sets	nset, nseti
element sets	eset, eseti
shared nodal (multiple point) constraints	mpc
offset the numbering of nodes and elements	offset
ABAQUS [®] output format	abaqus
time/history steps	abaqstep
element and material properties	abaqmats

You may want to view some of the properties graphically using the **condition** (**co**) command in the merge phase. The **tmm** command can be used to calculate the mass of each part. Be sure to merge the nodes using one of the merging commands such as **stp** and, finally, use the **abaqus** command to select ABAQUS[®] as the output option and the **write** command to actually create the input deck for ABAQUS[®].

These commands will generate the following "*" keywords:

*ACOUSTIC MEDIUM	aqacm (abaqmats option)	
*AMPLITUDE	lcd, flcd	
*BEAM SECTION	bsd (see also ibm, ibmi, jbm, jbmi, kbm, kbmi, bm)	
*BOUNDARY	b, bi, plane, fd, fdi, fdc, fdci, fds, fdsi, fv, fvi, fvc, fvci, fvs,	
	fvsi, fvv, fvvi, fvvc, fvvci, fvvs, fvvsi, ft, fti,vft, vfti, acc, acci, accc, accci, accs, accsi, vacc, vacci, vaccc, vaccci, vaccs, vaccs	
*BUCKLE	buckle (agstep option)	
*CLAY PLASTICITY	aqclay (abaqmats option)	
*CLOAD	fc, fci, fcc, fcci, fcs, fcsi, mom, momi	
*CONCRETE	aqconc (abaqmats option)	

*CONDUCTIVITY	aqcond (abamats option)
*CONTACT FILE	crsltf (abstep option)
*CONTACT NODE SET	si, sii (see also sid)
*CONTACT OUTPUT	fielo, histo (abstep options)
*CONTACT PAIR	sid (see also si, sii)
*CONTACT PRINT	cdataf (abstep option)
*COUPLED TEMPERATURE-DIS	PLACEMENT ctd (abstep option)
*CREEP	aquscre (abaqmats option)
*CYCLED PLASTIC	aqcycl (abaqmats option)
*DAMPING	aqfcdf, aqspdf, aqmpmf (abaqmats option)
*DEFORMATION PLASTICITY	aqdepl (abaqmats option)
*DENSITY	aqdens (abaqmats option)
*DEPVAR	aqdepv (abaqmats option)
*DLOAD	pr, pri
*DRUCKER PRAGER	aqpddm (abaqmats option)
*DYNAMIC	dynamic (abstep option)
*EL FILE	ersltf (abstep option)
*EL PRINT	edataf (abstep option)
*ELASTIC	aqelas (abaqmats option)
*ELEMENT	c3d, c3dh, c3di, c3dih, c3dr, c3drh, c3dm, c3dmh, c3dt,
	c3dht, c3drt, c3drht, c3dmt, c3dmht, dc3d, dcc3d, dcc3dd,
	dc3de, c3dp, c3dph, c3drp, c3drph, c3dmp, c3dmph, ac3d,
	c3de, c3dre, m3d, m3dr, s, sr, sr5, ds, srt, t3d, t3dh, t3dt,
	t3de, b3, b3h, pipe3, pipe3h, b3os, b3osh (abaqmats
	option)
*ELEMENT OUTPUT	fielo, histo (abstep options)
*ELSET	eset, eseti
*END STEP	abstep
*ENERGY FILE	ersltf (abstep option)
*ENERGY OUTPUT	fielo, histo (abstep options)
*ENERGY PRINT	endataf (abstep option)
*EQUATION	mpc, jd, jt
*EXPANSION	aqeps (abaqmats option)
*FAILURE RATIOS	aqfara (abaqmats option)
*FREQUENCY	frequency (abstep option)
*FRICTION	sid
*GEOSTATIC	geostati (abstep option)
*HEADING	title
*HEAT GENERATION	aqheat (abaqmats option)
*HEAT TRANSFER	heat (abaqmats option)
*HYPERELASTIC	aqhyper (abaqmats option)

*HYPOELASTIC ***INELASIC HEAT FRACTION *INITIAL CONDITIONS** *LATENT HEAT *MEMBRANE SECTION *MASS *MATERIAL *MODAL DYNAMIC *MODAL FILE *MODAL PRINT *MODAL OUTPUT *NO COMPRESSION ***NO TENSION** *NODE ***NODE FILE *NODE OUTPUT *NODE PRINT** *NSET ***ORIENTATION** *ORNL ***OUTPUT** *PERMEABILITY *PLASTIC *POROUS BULK MODULI ***POROUS ELASTIC** *POTENTIAL ***RADIATION FILE *RADIATION OUTPUT *RADIATION PRINT *RANDOM RESPONSE *RATE DEPENDENT *RATIOS *RESPONSE SPECTRUM *SECTION CONTROLS *SECTION FILE**

*SECTION PRINT *SHEAR RETENTION *SHELL GENERAL SECTION *SOILS *SOLID SECTION *SPECIFIC HEAT

aqhypo (abaqmats option) aginelst (abagmats option) ve,vei, velocity, rotation aglath (abagmats option) ageltyp (abaqmats option) pm, npm aqabmats moddyn (abstep option) mrsltf (abstep option) mdataf (abstep option) fielo, histo (abstep options) aqnocs (abaqmats option) aqnots (abaqmats option) block, cylinder, bm, jt, spring, npm nrsltf (abstep option) fielo, histo (abstep options) ndataf (abstep option) nset, nseti agorient (abagmats option) agornl (abagmats option) fielo, histo (abstep options) agperm (abagmats option) aqplas (abaqmats option) aqpbmptr (abaqmats option) appore (abagmats option) aqayld (abaqmats option) rdataf (abstep option) fielo, histo (abstep options) rrsltf (abstep option) random (abstep option) aqrdvp (abaqmats option) aganswel (abagmats option) response (abstep option) scontrol, hourglas, kinsplit, sorder, weight, agorient (abagmats options) srsltf (abstep option) sdataf (abstep option) agsret (abagmats option) ageltyp (abaqmats option) soils (abstep option) ageltyp (abaqmats option)

static (abstep otion)
ssdyn (abstep option)
abstep, and amplitud, cycle, inc, monitoni, nlgeom,
rottol, submax (abstep options)
si, sii (see also sid)
sid
aqswel (abaqmats option)
aqtens (abaqmats option)
aqusmt (abaqmats option)
visco (abstep option)
aqvisco (abaqmats option)

In case a "*" keyword command is not generated by **True***Grid*[®], use the **verbatim** command to create the exact line to be replicated in the output file. You may also wish to contact XYZ Scientific Applications at (925) 373-0628 or at <u>info@truegrid.com</u> to request that this feature be supported in later versions of **True***Grid*[®]. The **verbatim** command saves you from inserting the "*" keyword command into the ABAQUS[®] input deck. This is particularly useful if you are rerunning the **True***Grid*[®] session file as you evolve the model or make parametric changes to it.

Steps

Use the **abaqstep** command to define a single step in the analysis. You can select the type of analysis, associated parameters, loads, and output. Details are found below.

Sliding (or Contact) Surfaces

To form a contact surface, use the **sid** command to define the surface type. Others are formed partially from nodes. The **sid** command also has optional parameters such as friction.

While in the part phase use the **si** or **sii** commands to select faces of that part for inclusion in the surface definition. If the face is from a shell element, be sure to use the **orpt** orientation command prior to issuing the **si** or **sii** command so that the orientation of the face is towards the opposing face in the sliding surface. If you are using part replication (**Irep**, **grep**, or **pslv**), then you may want to use the **lsii** or the **gsii** to increment the sliding interface command for each replication. You must use the **sid** command for each sliding surface that is referenced when the **lsii** or **gsii** commands are used with replication.

You can use sets in the merge phase to add faces or nodes to a sliding surface. These sets can be formed with the combined use of the **fset** (for faces) and the **nset** (for nodes) commands in the part and merge phase. Only use node sets when defining a sliding surface where nodes are on the slave

side and otherwise only use face sets. The node density between the master and slave sides of the interface should be roughly equal. When forming the mesh in the part phase, it may be necessary to build into the mesh a small gap between the master and slave sides of the contact surfaces, depending on the mesh density and the curvature to avoid initial penetration of the slave side into the master side.

When you merge the nodes (in the merge phase), the nodes from the slave side will not be allowed to merge with the nodes on the master side. Use the **mns** command in the merge phase to override this condition. When you fist merge the nodes, a table will be printed to the text window and the tsave file listing the number of faces and nodes associated with each sliding surface. Check this table carefully. You can also see the faces and nodes of either side of the sliding surfaces using the **co** command. When using this in combination with the hide graphics option, you can see the orientation of the faces. Use **labels** command to show how the nodes have merged graphically.

Initial and Boundary Conditions

There are several ways to constrain nodes. The **b** and **bi** commands in the part phase or the **b** command in the merge phase will constrain nodes in the global coordinate system. Use the **plane** command to specify symmetry plane constraints including symmetry planes with failure. Nodes in the model will be assigned to these symmetry planes based on the tolerance you specify in the **plane** command. The **lb** (and the associated **lsys**) command can be used to set the constraints in any coordinate system. The **sfb** command can also be used to do this. Be sure that something in the model has been constrained or the entire model might fly off.

If you use the **velocity** or **rotation** command in the control phase, then all subsequent parts will be assigned this initial velocity. This can be over ridden using the **velocity** or **rotation** command within a part. Both of these conditions can be over ridden for specific regions of the mesh using the **ve** or **vei** commands in the part phase or the **ve** command in the merge phase. Velocities are not accumulative. Care is needed when assigning initial velocities so that when two nodes are merged, the velocities of those two nodes match. Only one of the velocities will be used and if they do not match, you may get an unexpect result. Usually, if the velocities of two merged nodes do not match, this indicates an error in the model.

Loads

There are numerous ways to assign loads. Every command that generates a load has a load curve or set id number associated with it. This number is used in the **abaqstep** command to tie each load to a step. The list of commands that can be used to assign loads in the part phase includes:

fc	Cartesian concentrated nodal loads
fci	Cartesian concentrated nodal loads
fcc	cylindrical concentrated nodal loads

fcci	cylindrical concentrated nodal loads
fcs	spherical concentrated nodal loads
fcsi	spherical concentrated nodal loads
mom	nodal moment about one of the nodal axis in the global coordinate system
momi	nodal moment about one of the nodal axis in the global coordinate system
ndl	pressure converted to distributed nodal loads
ndli	pressure converted to distributed nodal loads
pr	pressure loads on element faces
pri	pressure loads on element faces
pramp	pressure loads on element faces
fv	Cartesian prescribed nodal velocities
fvi	Cartesian prescribed nodal velocities
fvc	cylindrical prescribed nodal velocities
fvci	cylindrical prescribed nodal velocities
fvs	spherical prescribed nodal velocities
fvsi	spherical prescribed nodal velocities
fvv	Cartesian variable prescribed nodal velocities
fvvi	Cartesian variable prescribed nodal velocities
fvvc	cylindrical variable prescribed nodal velocities
fvvci	cylindrical variable prescribed nodal velocities
fvvs	spherical variable prescribed nodal velocities
fvvsi	spherical variable prescribed nodal velocities
acc	Cartesian prescribed nodal acceleration
acci	Cartesian prescribed nodal acceleration
accc	cylindrical prescribed nodal acceleration
accci	cylindrical prescribed nodal acceleration
accs	spherical prescribed nodal acceleration
accsi	spherical prescribed nodal acceleration
vacc	Cartesian variable prescribed nodal acceleration
vacci	Cartesian variable prescribed nodal acceleration
vaccc	cylindrical variable prescribed nodal acceleration
vaccci	cylindrical variable prescribed nodal acceleration
vaccs	spherical variable prescribed nodal acceleration
vaccsi	spherical variable prescribed nodal acceleration
fd	Cartesian displacement
fdi	Cartesian displacement
fdc	cylindrical displacement
fdci	cylindrical displacement
fds	spherical displacement
fdsi	spherical displacement

fc	Cartesian concentrated nodal loads
mom	nodal moment about one of the nodal axis in the global coordinate system
ndl	pressure converted to distributed nodal loads
pr	pressure loads on element faces
pramp	pressure loads on element faces
fv	Cartesian prescribed nodal velocities
fvv	Cartesian variable prescribed nodal velocities
vacc	Cartesian variable prescribed nodal acceleration
fd	Cartesian displacement

The list of commands that can be used to assign loads in the merge phase includes:

The **pramp** command is used with either **pr** or **pri**. It applies a pressure based on a function for all nodes that have a zero pressure. In most cases, the magnitude of the load is specified using a load curve. This varies the amplitude of the load with respect to time.

Load Curves

Load curves are 2D polygonal curves that can be created using the **lcd** and **flcd** commands. Load curves are typically used to define the relative amplitude of a load with respect to time. They can be used to relate any two variables. Almost all prescribed loads require a load curve in time so that the amplitude of the load can vary. It is best to define a load curve before it is referenced in a load or material model to avoid a warning message.

In some dialogue boxes you might be prompted for a load curve or a set id. This is because such commands can be used to define, for example, a dynamic load or a static load that has the option to turn loads on or off in the **abstep** command.

Bricks

Brick elements refer to hexahedral, prism (wedge), and tetrahedral elements. Most, but not all, materials support the different brick element types. There are no section properties for bricks. Be sure to use the **mate**, **mt**, or **mti** command to assign the proper material to each section of the mesh.

The element local coordinate system used in an orthotropic or anisotropic material is imposed by the order of the nodes that define the element. You can flip the nodal ordering to switch the orientation of this local coordinate system using the **or** command in the part phase.

Shells

Shell elements refer to both quadrilateral and triangular elements and sometimes referred to as structural elements. Cross sectional properties are included in the material model when the shell type

is selected. There are no section properties for bricks. Be sure to use the **mate**, **mt**, or **mti** command to assign the proper material to each section of the mesh. The default shell thicknesses are included as part of the cross sectional properties. These default thicknesses can be over ridden with the use of the **thic** command in the part phase. Both can be over ridden for a region of the part using the **th** and **thi** commands. If you have two surfaces that represent the inner and outer surfaces of a structure that is to be modeled using shell elements, than you can use the **ssf** and **ssfi** commands in the part phase to create shells with variable thickness.

The orientation of the positive normal direction to the shell is dictated by the nodal ordering of the nodes that define the shell. This positive direction is used, for example, to determine the direction of a positive pressure. This direction can be flipped using the **n** command in the part phase. The order of the nodes also dictate the local material coordinate system which can be important when using an orthotropic or anisotropic material. Use the **or** command to flip the coordinate system to the desired direction. When an angle is specified for the orientation of a composite material, it is with respect to this orientation.

Beams

Two nodes are required to form a beam element. In many cases, a third node is needed to define the local coordinate system used to form the cross sectional properties. These element are sometimes referred to as structural elements. Use the **ibm**, **ibmi**, **jbm**, **jbmi**, **kbm**, and **kbmi** commands to form beam elements with shell or brick structures while in the part phase. If the material of the shell or brick structure is set to zero using the **mt**, **mti**, or **mate** command, then the shells or bricks will be ignored, but the embedded beams will not be ignored. This is a convenient way to build an array of beams using block structured methods. You can also use the **bm** command in the merge phase to build a string of beams that can be made to follow a 3D curve. The **beam** command (this command has been denigrated) can also be used to form beam elements, but the command is not interactive.

Both the element type and the default cross section properties are defined in the material definition. You can also use the **bsd** command to define cross sectional properties to over ride the material default cross sectional properties. When you create a beam, refer to the **bsd** number to assign these cross sectional properties to the beam.

Point Masses

Point masses can be generated in the part or merge phase. There are two types of point masses. The **pm** command will assign a mass to an existing node. The **npm** will create a new node and assign it a mass. The latter must then be connected either to a spring or beam.

Shared Constraints

Use the **mpc** command to couple a set of nodes. This requires that you create a node set first. The **nset** or **nseti** command can be used in the part phase and the **nset** command in the merge phase to create a node set. Also, click on the pick button in the environment window during the merge phase. Then you can use the mouse to modify or create a node set. The nodes sharing a set of constraints will not be merged together.

Post Processing

The **abaqstep** command is used to identify the variables that are to be processed for post processing. There are four post processing options: standard results files, data file requests, field output, and history output. Standard results files are specified with the **abastep** options **crsltf**, **ersltf**, **nrsltf**, **mrsltf**, **rrsltf**, **srsltf**, **enrsltf**. These can be repeated as many times as is needed. There may be some optional arguments followed by a list of variables. This list of variables are ended with a semicolon. The dialogue box helps make it easy to select the variables from a list, but the list is quite long. For data file requests, use the options **cdataf**, **edataf**, **ndataf**, **rdataf**, **sdataf**, **endataf**. Field and history variables are specified using the **fielo** and **histo** options.

II. ABAQUS[®] Example

III. ABAQUS[®] Output Reference

The syntax for commands are described below were literals are highlighted in bold. Symbols to be substituted are italicized. Many options in these commands corresponds to an ABAQUS keyword command. This is frequently noted in the text below with the "*KEYWORD" in the right column of the description of the option. Each command is described by an entry like the following:

Command Syntax Conventions

When an arbitrarily long list of arguments are required, a semi-colon terminates the list. When a semi-colon is found in the description of an option or command, this indicates such a list. It is common to have a list inside another list. Each list must have a terminating semi-colon. This is analogous to parenthesis in algebraic expressions where the opening parenthesis must be balanced with a closing parenthesis. In this case, the keyword that initiates a list of items must be balanced with a closing semi-colon. Sometimes a short list of arguments and options can be repeated indefinitely, forming a list. The set of arguments and options that can be repeated are placed in square brackets. Sometimes the abbreviation #_things is used to mean "number of things". Each command is described by an entry like the following:

command summary description

command *arguments* brief description of functionality with brief descriptions of what the *arguments* should be. indentation is used to indicate a list of options to the *arguments*

Some commands in the part phase require a region specification. The region selects a face of the mesh, among other things. Others may require a progression specification. The progression selects multiple faces, among other things. In the merge phase, such commands require an option. In all of these cases, a portion of the mesh is identified. For example, the **si/sii** command has this property.

Remarks

When present, the Remarks section describes the command in even greater detail. It may describe the context in which the command is normally used, and other commands used in association with this command. It may describe side effects. It may describe other, similar commands. In many cases, it includes a description of where to find the command in the menus.

Examples

When present, this shows the exact use of the command. If you use the dialogues, this command will be generated by simple selection options with the mouse and entering data where indicated. The

command, as shown here, will appear in the session file for later reuse and possible modification. You can also enter the command into the text window or insert it into a command file to be run in batch mode.

abaqmats **ABAQUS[®]** materials

abaqmats <i>material_</i> # <i>option</i>	s ;	
where an <i>option</i> can be any	y of the following:	
aqeltyp type	select the family of element types	
where <i>type</i> can be		
c3d	standard solid stress/displacement	
c3dh	hybrid solid stress/displacement	
c3di	incompatible modes solid stress/displacement	
c3dih	incompatible modes hybrid solid stress/displacement	
c3dr	reduced integration solid stress/displacement	
c3drh	reduced integration hybrid solid stress/displacement	
c3dm	modified solid stress/displacement	
c3dmh	modified hybrid solid stress/displacement	
c3dt standard solid coupled temperature displacement		
c3dht	hybrid solid coupled temperature displacement	
c3drt	reduced integration solid coupled temperature displacement	
c3drht	reduced integration hybrid solid coupled temperature displacement	
c3dmt	modified solid coupled temperature displacement	
c3dmht	modified hybrid solid coupled temperature displacement	
dc3d solid diffusive heat/mass diffusion		
dcc3d	standard solid forced convection/diffusion	
dcc3dd	w/ dispersion control solid forced convection/diffusion	
dc3de	solid coupled thermal-electric	
c3dp	standard solid pore pressure	
c3dph	hybrid solid pore pressure	
c3drp	reduced integration solid pore pressure	
c3drph	reduced integration hybrid solid pore pressure	
c3dmp	modified solid pore pressure	
c3dmph	modified hybrid solid pore pressure	
ac3d	solid acoustic	
c3de	solid piezoelectric	
c3dre	reduced integration solid piezoelectric	
m3d	standard membrane	
m3dr	reduced integration membrane	
S	standard shell stress/displacement	
sr	reduced integration shell stress/displacement	

sr5	reduced integration w/ 5 dofs shell stress/di	splacement	
ds	shell heat transfer		
srt	shell coupled temperature-displacement		
t3d	standard truss stress/displacement		
t3dh	hybrid truss stress/displacement		
t3dt	truss coupled temperature displacement		
t3de	truss piezoelectric		
b3	standard beam		
b3h	hybrid beam		
pipe3	pipe		
pipe3h	pipe hybrid		
b3os	open section beam		
b3osh	hybrid open section beam		
aqdens density	mass density *DENSITY		
aqdepv #_variables	number of dependent variable	les	
aqtherm opt1	aqtherm <i>opt1</i> thermal expansion coefficients		
where opt1 can be	any of the following:		
aqexze <i>temp_0</i> initial temperature			
aqnpm opt2 non-porous material			
where opt2	must be one of the following:		
aqexis [<i>alpha tmpopts</i> ;]; isotropic			
where a <i>tmpopt</i> can be			
	aqotmp temperature		
	<pre>aqofv variable_list ;</pre>	variable dependencies	
aqexo	r [alpha_11 alpha_33 tmpopt fldopt];	orthotropic	
aqexa	n [<i>alpha_11 alpha_23 tmpopt fldopt</i>] ;	anisotropic	
aqmstr opt2		material structural	
where <i>opt2</i>	must be one of the following:		
aqexis [<i>alpha tmpopt stropt</i>];		isotropic	
aqexor [<i>alpha_11 alpha_33</i> stropt tmpopt];		orthotropic	
aqexan [<i>alpha_11 alpha_23</i> stropt tmpopt];		anisotropic	
aqporf [<i>alpha tmpopt fldopt</i>] ;		pore fluid	
aqcond opt1		conductivity	
where <i>opt1</i> must be	e one of the following:		
aqcdis [conductivity tmpopt fldopt];		isotropic	
aqcdor [k_11 k_22 k_33 tmpopt fldopt];		orthotropic	
aqcdan [k_11 k_33 tmpopt fldopt];		anisotropic	
aqlath [heat temp ter	mp];	latent heat	
<pre>aqspec [specific_heat tmpopt fldopt];</pre>		specific heat	
aqperm opt1		permeability	
where <i>opt1</i> can be	any of the following:		

aqsww weight	specific weight of wa- ter
agpris k	isotropic
agpror k11 k22 k33	orthotropic
appran $k11 \dots k33$	anisotropic
aqvoid	voids ratio
agporo [temp ont1] :	porous bulk moduli
where <i>ont1</i> can be any of the following:	F
anslgr modulus	solid grain bulk
- 19	modulus
aqprfl modulus	permeating fluid bulk modulus
aqacm modulus [drag frequency];	acoustic medium
aqdepl [modulus ratio yield exp offset temp];	deformation plasticity
aqusmt opt1 list params;	user material
where <i>opt1</i> must be one of the following:	
aqumsy	symmetric
aqumusy	unsymmetric
aqelas opt1;	
where <i>opt1</i> must be one of the following:	
aqelis [modulus ratio tmpopt fldopt];	isotropic
aqelec [e1 e2 e3 v12 v13 v23 g12 g13 g23 t	<i>tmpopt fldopt</i>]; engineering
aqella [e1 e2 v12 g12 g13 g23 tmpopt fldop	ot]; lamina
aqelor [<i>d1111 d2323 tmpopt fldopt</i>];	orthotropic
aqelan [<i>d1111 d2323 tmpopt fldopt</i>] ;	anisotropic
aghyper opt1 - hyperelastic	-
where <i>opt1</i> must be one of the following:	
aqseps	strain energy by user subrou- tine
aqsepp 1 [c10 c01 d1 r tmpopt fldopt];	order 1
aqsepp 2 [c10 c02 d1 d2 r tmpopt fldopt]; order 2
aqsepp 3 [c10 c03 d1 d2 d3 r tmpopt flde	opt]; order 3
agsepp 4 [c10 c04 d1 d2 d3 d4 r tmpopt]	fldopt]; order 4
aqhypo [modulus ratio i1 i2 i3];	hypoelastic
aqpore opt1	porous elastic
where <i>opt1</i> must be one of the following:	-
aqctsm [bulk shear limit tmpopt fldopt];	constant shear
aqcpsm [bulk ratio limit tmpopt fldopt];	Poisson's
aqheat	heat generation
aqmpmf factor	mass proportional damping factor
aqspdf factor	stiffness proportional damping factor

aqfcdf factor fraction for composite damping factor agnocs allow no compression stress allow no tension stress aqnots **aqconc** [stress strain]; concrete **aqtens** [stress strain]; tension stiffening aqfara opt1; failure ratios where *opt1* can be any of the following: aqfr1 ratio ultimate biaxial/uniaxial compression stress aqfr2 ratio uniaxial tension/compression stress at failure aqfr3 ratio plastic strain at ultimate stress biaxial/uniaxial principle stress/uniaxial stress at cracking aqfr4 ratio aqsret opt1; shear retention where *opt1* can be any of the following: agshrt1 rho dry concrete aqshrt2 epsilon dry concrete aqshrt3 rho wet concrete aqshrt4 epsilon wet concrete aqdppm [list opt1 tmpopt fldopt ;] ; Drucker Prager plasticity where *opt1* can be any of the following: aqdpm1 angle material angle of friction aqdpm2 k ratio of flow stress in triaxial tension/compression aqdpm3 angle dilation angle **aqplas** opt1 [stress strain tmpopt fldopt]; plastic where *opt1* can be one of the following: agishrd isotropic hardening kinematic hardening agkihard aqayld sigma11 sigma22 sigma33 tau12 tau13 tau23 potential **aqrdvp** [*d p tmpopt fldopt*] ; rate dependent agcree opt1 - creep where *opt1* must be one of the following: aguscre user subroutine **aqthcre** [*a n m temp*]; time hardening **aqshcre** [*a n m temp*]; strain hardening **aqhscre** [*a b n dh r*]; hyperbolic sine ornl aqornl opt1 where *opt1* can be any of the following: aqaornl rate saturation rate for kinematic shift aghornl rate rate of kinematic shift w.r.t. creep strain agmornl stainless steel hardening invoke optional alpha reset procedure aqrornl

aqswel opt1	swelling
where <i>opt1</i> must be one of the following:	
aqusswe	user subroutine
<pre>aqdtswe [strain_rate tmpopt fldopt</pre>]; data specified
aqanswel r11 r22 r33	ratios
aqclay	clay plasticity
aqint modulus stress_ratio beta k	specify intercept
aqnoint modulus stress_ratio surf_s	<i>ize beta k</i> no intercept
aqcycl opt1 [stress tmpopt fldopt;]	cycled plastic
where <i>opt1</i> can be one of the following:	
aqcycl1	every 10th cycle
aqcycl2	every 100th cycle
aqinelst heat_flux	inelastic heat fraction
aqvisco optl	viscoelastic
where <i>opt1</i> can be one of the following:	
aqviscl real_g1 imag_g1 a real_k1	imag_k1 b formula
aqvisc2 [real_wg imag_wg real_wk	<i>imag_wk frequency</i>]; tabular
aqvisc3 [opt2 time];	prony
where opti can be any of the follo	wing:
aqprny1 ratio	shear relaxation modulus ratio
aqprny2 rallo	bulk relaxation modulus ratio
scontrol jacior1 jacior2 jacior5	section scale factors
where the option can be	
onhonced	anhanaad
rolay	relay stiffness
stiffness	stiffness
viscous	viscous
kinsnlit ontion	130045
where the <i>option</i> can be	
centroid	centroid
orthogon	orthogonal
sorder	select second order
weight wf	weight factor
aqorient type args	assign an orientation to the elements
where the <i>type</i> and <i>args</i> can be	-
coor <i>x</i> 1, <i>y</i> 1, <i>z</i> 1, <i>x</i> 2 <i>y</i> 2 <i>z</i> 2 <i>ld angle</i>	for coordinates

This command is used in conjunction with the **mt**, **mti**, **mate**, and **mtv** commands. This command sets the global properties of a material model and identifies this model with a number. Then the **mt**,

mti, **mate**, and **mtv** commands can be used to associate elements with this model by its identification number.

When you select a family of element types, using the **aqeltyp** option, the appropriate element type will be made depending on the shape (hexahedron, prism, tetrahedron, quad shell, or triangle) of the element that you generate.

tmpopt means optionally "aqotmp temperature".
fldopt means optionally "aqofv list_field_values ;".
stropt means optionally "aqeps effective_stress".
short comments are added after first dash in a line.

abaqstep ABAQUS[®] analysis step

<pre>abaqstep step_# procedure options ;</pre>	creates *STEP
where the <i>procedure</i> can be one of the fe	ollowing:
buckle parameter ;	creates *BUCKLE
where the <i>parameter</i> must be on	e of:
dead	dead loading
live	live loading
ctd parameters features; creat	es *COUPLED TEMPERATURE-DISPLACEMENT
where the ordered parameters th	at must follow are:
btol	basic tolerance
ttol	temperature tolerance
ststep	suggested initial time step
totstep	total time period for the step
where the unordered optional fea	<i>itures</i> are:
explicit	explicit integration
mtol tolerance	moments tolerance
nocreep	no creep
steady	steady state analysis
cetol tolerance	creep tolerance
deltmx temperature	maximum temperature change
cetol tolerance	creep tolerance
deltmx tolerance	maximum temperature change
timemin time	minimum time increment
timemax time	maximum time increment
dynamic parameters features ;	creates *DYNAMIC
where the ordered <i>parameters</i> m	ust be:
method	

which can be one of the fo	llowing:
explicit	explicit integration
subspace	subspace projection method
implicit tolerance	implicit integration
timeinc	suggested time increment
time	time period
where the unordered optional feat	<i>ures</i> can be:
direct	user control of step size (explicit only)
vectors #_modes	set the number of modes (subspace only)
alpha <i>alpha</i>	artificial damping control
haftol tolerance	half-step residual tolerance
initial	no initial accelerations
nohaf	no half-step residual
mtol tolerance	moments tolerance
timemin time	minimum time increment
timemax time	maximum time increment
frequenc parameters features;	creates *FREQUENCY
where the ordered parameters mu	st be:
ne	number of eigenvalues
maxfreq	maximum frequency
where the unordered optional feat	<i>ures</i> can be:
<pre>shift frequency_squared</pre>	shift point
nvecs n	number of vectors
maxit n	number of iterations
geostati parameter feature ;	creates *GEOSTATIC
where the <i>parameter</i> must be:	
tolerance	tolerance
where the optional <i>feature</i> is:	
mtol tolerance	moments tolerance
heat parameters features ;	creates *HEAT TRANSFER
where the ordered <i>parameters</i> mu	st be:
temp	temperature tolerance
times	time step
timep	time period
timeinc	minimum time increment
where the unordered optional <i>feat</i>	<i>ures</i> can be:
deltmx temp	maximum temperature change
endcon ss	steady state ending condition
endcon period	periodic
steady	steady state analysis
timmxinc time	maximum time increment
temprate time	temperature change rate

moddyn parameter features ;	creates *MODAL DYNAMIC
where the <i>parameter</i> must be:	
time for total time	
where the unordered optional feat	<i>ures</i> can be:
initial yes	start new dynamic response
initial no	use last dynamic response
random parameters ;	creates *RANDOM RESPONSE
where the ordered parameters mu	st be:
lfreq	lowest frequency
hfreq	highest frequency
n	number of points
bias	bias
i	frequency scale
response parameters ;	creates *RESPONSE SPECTRUM
where the ordered parameters can	be repeated up to 2 times:
name	name of response spectrum
x	x-direction cosine
У	y-direction cosine
Z	z-direction cosine
scale	magnitude
soils parameters features ;	creates *SOILS
where the ordered parameters mu	st be:
tol	tolerance
times	initial time step
timep	total time period for the step
where the unordered optional feat	<i>ures</i> can be:
consolid	transient, consolidated analysis
endcon ss	end at steady state
endcon period	periodic
mtol tol	moments tolerance
utol tol	maximum pore pressure change
tmmninc time	minimum time increment
tmmxinc time	maximum time increment
presrate rate	minimum pore pressure rate of change
static parameters features;	creates *STATIC
where the ordered parameters mu	st be:
tol	tolerance
times	initial time step
timep	total time period for the step
where the unordered optional feat	ures can be:
mtol tol	moments tolerance

tmmninc time	minimum time increment
tmmxinc time	maximum time increment
ssdyn parameters features ;	creates *STEADY STATE DYNAMIC
where the ordered parameters mus	st be:
freq	lowest frequency
freq	highest frequency
n	number of points
bias	bias
i	frequency scale
visco parameters features ;	creates *VISCO
where the ordered parameters mus	st be:
tol	tolerance
times	suggested initial time step
timep	total time period for the step
where the unordered optional feat	ures can be:
cetol tol	maximum creep strain rate
explicit	explicit integration
mtol tol	moments tolerance
tmmninc time	minimum time increment
tmmxinc time	maximum time increment
where the procedure definition is followe	d by unordered options which can be:
amplitude <i>flag</i>	
where <i>flag</i> can be	
step	stepped amplitude
ramp	ramped amplitude
cycle #_inter	maximum iterations in an increment
inc #_inter	maximum increments in a step
linear new	linear analysis with a new stiffness matrix
linear old	linear analysis with old stiffness matrix
monotoni	monotonic
nlgeom	geometric non-linearity
rottol tol	maximum increment of rotation
submax	suppress subdivisions
[abdload blc <i>load_curve_# type</i>]	associated distributed loads *DLOAD
where <i>type</i> can be	
pr	pressure
[abcload blc <i>load_curve_# type</i>]	associated concentrated loads *CLOAD
where <i>type</i> can be	
fc	concentrated force
mom	concentrated moments
fd	displacement
fv	velocity

acc	acceleration	
ft	forced temperature	
[crsltf options keys ;]	contact results file	*CONTACT FILE
where an option can be		
freq frequency	frequency	
sinm face_set	master sliding interfa	ce
sins face_set	slave sliding interface	9
namens set_name	name of node set	
where keys is a space delimited list	st of variable names	
(see the ABAQUS User's Manual	l for the complete list)	
[ersltf options keys ;]	element results file	*EL FILE
where an <i>option</i> can be		
dirw	directions	
elesn set_name	element set name	
freq frequency	frequency	
Imode mode	last mode	
fmode mode	first mode	
posi flag	position	
where <i>flag</i> can be		
1	averaged at nodes	
2	centroidal	
3	integration points	
4	nodes	
reba name	rebar	
where <i>keys</i> is a space delimited list	st of variable names	
(see the ABAQUS User's Manual	l for the complete list)	
[nrsltf options keys ;]	nodal results file	*NODE FILE
where an <i>option</i> can be		
freq frequency	frequency	
noglob	no global dire	ections
Imode mode	last mode	
fmode mode	first mode	
namens set_name	node set name	
where <i>keys</i> is a space delimited li	st of variable names	
(see the ABAQUS User's Manual	I for the complete list)	
[mrsltf options keys ;]	modal results file	*MODAL FILE
where an <i>option</i> can be		
freq frequency	frequency	
where <i>keys</i> is a space delimited li	st of variable names	
(see the ABAQUS User's Manua)	I for the complete list)	
[rrsiti options keys ;]	radiation results file	*KADIA HON FILE

where an <i>option</i> can be	
freq frequency	frequency
cavi cavity_name	cavity
namees set_name	element set
surf surface_name	surface
where keys is a space delimited lis	t of variable names
(see the ABAQUS User's Manual	for the complete list)
[srsltf surface section options keys ;] section results file *SECTION FILE
where an option can be	
laxe	local axes output
freq frequency	frequency
nupd	no update
dann node_#	anchor node
danc x y z	anchor point
daxn1 node_#	first axis node
daxc1 x y z	first axis point
daxn2 node_#	second axis node
daxc2 x y z	second axis point
where keys is a space delimited lis	t of variable names
(see the ABAQUS User's Manual	for the complete list)
[enrsltf options ;]	energy results file *ENERGY FILE
where an option can be	
namees set_name	element set name
freq frequency	frequency
where <i>keys</i> is a space delimited lis	t of variable names
(see the ABAQUS User's Manual	for the complete list)
[cdataf options keys ;]	contact data file *CONTACT PRINT
where an <i>option</i> can be	
freq frequency	frequency
sin interface_#	sliding interface number
namens set_name	node set name
nsum	no summary
tota	totals
where <i>keys</i> is a space delimited lis	t of variable names
(see the ABAQUS User's Manual	for the complete list)
[edataf options keys ;]	element data file *EL PRINT
where an <i>option</i> can be	
elesn set_name	element set name
freq frequency	frequency
Imode mode	last mode
fmode mode	first mode
posi flag	position

where <i>flag</i> can be		
1	averaged at nodes	
2	centroidal	
3	integration points	
4	nodes	
reba name	rebar	
nsum	no summary	
tota	totals	
where <i>keys</i> is a space delimited lis	t of variable names	
(see the ABAQUS User's Manual	for the complete list)	
[ndataf options keys ;]	nodal data file	*NODE PRINT
where an option can be		
freq frequency	frequency	
glob	global	
jmode mode	last mode	
fmode mode	first mode	
namens set_name	node set name	
nsum	no summary	
tota	totals	
where keys is a space delimited lis	st of variable names	
(see the ABAQUS User's Manual	for the complete list)	
[mdataf options keys ;]	modal data file	*MODAL PRINT
where an option can be		
freq frequency	frequency	
where <i>keys</i> is a space delimited lis	st of variable names	
(see the ABAQUS User's Manual	for the complete list)	
[rdataf options keys ;]	radiation data file	*RADIATION PRINT
where an <i>option</i> can be	_	
freq frequency	frequency	
cavi name	cavity	
namees set_name	element set	
surf name	surface	
nsum	no summary	
tota	totals	
where <i>keys</i> is a space delimited lis	t of variable names	
(see the ABAQUS User's Manual	for the complete list)	*SECTION PRINT
sdataf surface section options keys	;] section data file	
where an <i>option</i> can be		
cavi name	cavity	
namees set_name	element set	
surt name	surface	

$\mathbf{daxn} \ node_1 \ node_2$	define axes by	nodes	
daxc $x_1 y_1 z_1 x_2 y_2 z_2$	define axes by	coordinates	
where keys is a space delimited list	t of variable na	mes	
(see the ABAQUS User's Manual	for the comple	te list)	
[endataf options ;]	energy data fil	e *ENE	ERGY PRINT
where an option can be			
namees set_name	element set na	me	
freq frequency	frequency		
[fielo options vars]	output field	*OUT	TPUT, FIELD
where an option can be			
oni n	number of inte	ervals	
tim flag	time marks		
where <i>flag</i> can be			
yes			
no			
cnew	start from scra	itch	
cadd	add to previou	is options	
crepl	replace only si	imilar types	
where <i>vars</i> must one of			
all	all variables		
list lists ;			
where a <i>list</i> can be			
cont options list;	contac	t variables	*CONTACT OUT-
	_		PUT
where an <i>option</i> can	n be		
cpset set_nam	e	contact pair	
contact		contact	
nset set_name		node set	
master surface	e_name	master side	
slave surface_	name	slave side	
where a <i>list</i> must be	e one of:	11	• 11
all		all energy var	riables
preselec		preselected v	ariables
<i>Reys</i>		list of variable	les richle nom og
where keys	A OUS Llaar'a	Monual for the	riable names
(see the AD	AQUS User's	vianual for the	*ELEMENT OUTDUT
where an antion and	e ho	it variables	ELEWIENT OUTFUT
olsot set name		alamant cat	
nosition loc	5	nosition	
where loc of	an he	Position	
where the ca		centroidal	
cent		Controluar	

integ	integration p	oints
nodes	nodes	
rebar name	rebar	
where a <i>list</i> must be one of	f:	
all	all energy va	riables
preselec	preselected v	variables
keys	list of variab	les
where <i>keys</i> is a spa	ce delimited list of va	ariable names
(see the ABAQUS	User's Manual for the	e complete list)
node options list;	node variables	* N O D A L
		OUTPUT
where an <i>option</i> can be		
nset <i>set_name</i>	node set	
tracer name	tracer	
where a <i>list</i> must be one of	f:	
all	all energy va	riables
preselec	preselected v	variables
keys	list of variab	les
where <i>keys</i> is a spa	ce delimited list of va	ariable names
(see the ABAQUS	User's Manual for th	e complete list)
radi options list; radiati	on variables *RAI	DIATION OUTPUT
where an <i>option</i> can be		
cavity name	cavity	
elset set_name	element set	
surface surface_name	e surface	
where a <i>list</i> must be one of	f:	
all	all energy va	riables
preselec	preselected v	variables
keys	list of variab	les
where keys is a spa	ce delimited list of va	ariable names
(see the ABAQUS	User's Manual for th	e complete list)
[histo options vars]	output history *OU	TPUT, HISTORY
where an <i>option</i> can be	с · ·	. 1
freq interval	frequency in	terval
Imod <i>list_modes</i> ;	mode list	
where vars must one of	11 ' 1 1	
	all variables	
IIST <i>USTS</i> ;		
where a <i>list</i> can be	agente at viewighter	
cont options list;	contact variables	PUT

where an option can be		
cpset <i>set_name</i>	contact pair	
nset set_name	node set	
master surface_name	master side	
slave surface name	slave side	
where a <i>list</i> must be one of:		
all	all energy variables	
preselec	preselected variables	
kevs	list of variables	
where <i>kevs</i> is a space d	elimited list of variable names	
(see the ABAOUS Use	r's Manual for the complete list)	
elem options list; ele	ment variables *ELEMENT OUTF	UT
where an <i>option</i> can be		
elset set name	element set	
tracer set name	tracer	
rebar <i>name</i>	rebar	
where a <i>list</i> must be one of:		
all	all energy variables	
preselec	preselected variables	
kevs	list of variables	
where keys is a space d	elimited list of variable names	
where keys is a space u		
(see the ABAOUS Use	er's Manual for the complete list)	
(see the ABAQUS Use node options list ; not	er's Manual for the complete list) de variables * N O D A	ΑL
(see the ABAQUS Use node options list; not	er's Manual for the complete list) de variables * N O D A OUTPUT	A L
(see the ABAQUS Use node options list; not where an option can be	er's Manual for the complete list) de variables * N O D A OUTPUT	A L
where an <i>option</i> can be nset set name	er's Manual for the complete list) de variables * N O D A OUTPUT node set	A L
where an <i>option</i> can be nset set_name tracer set_name	er's Manual for the complete list) de variables * N O D A OUTPUT node set tracer	A L
where an <i>option</i> can be nset set_name tracer set_name where a <i>list</i> must be one of:	er's Manual for the complete list) de variables * N O D A OUTPUT node set tracer	A L
where an <i>option</i> can be nset set_name where a <i>list</i> must be one of: all	er's Manual for the complete list) de variables * N O D A OUTPUT node set tracer all energy variables	A L
where a <i>option</i> can be nset set_name tracer set_name where a <i>list</i> must be one of: all preselec	er's Manual for the complete list) de variables * N O D A OUTPUT node set tracer all energy variables preselected variables	A L
where an <i>option</i> can be nset set_name tracer set_name where a <i>list</i> must be one of: all preselec <i>keys</i>	and the complete list of variable names ar's Manual for the complete list) de variables * N O D A OUTPUT node set tracer all energy variables preselected variables list of variables	A L
where <i>keys</i> is a space of (see the ABAQUS Use node options list ; nod where an option can be nset set_name tracer set_name where a list must be one of: all preselec <i>keys</i> where <i>keys</i> is a space of	er's Manual for the complete list) de variables * N O D A OUTPUT node set tracer all energy variables preselected variables list of variables lelimited list of variable names	A L
where <i>keys</i> is a space of (see the ABAQUS Use node options list ; nod where an option can be nset set_name tracer set_name where a list must be one of: all preselec keys where keys is a space of (see the ABAQUS Use	er's Manual for the complete list) de variables * N O D A OUTPUT node set tracer all energy variables preselected variables list of variables lelimited list of variable names er's Manual for the complete list)	A L
where an <i>option</i> can be node <i>options list</i> ; nod where an <i>option</i> can be nset <i>set_name</i> tracer <i>set_name</i> where a <i>list</i> must be one of: all preselec <i>keys</i> where <i>keys</i> is a space d (see the ABAQUS Use moda <i>list</i> ; mo	er's Manual for the complete list) de variables * N O D A OUTPUT node set tracer all energy variables preselected variables list of variables lelimited list of variable names er's Manual for the complete list) odal variables *MODAL OUTPU	Τ
where <i>keys</i> is a space of (see the ABAQUS Use node options list ; nod where an option can be nset set_name tracer set_name where a list must be one of: all preselec <i>keys</i> where <i>keys</i> is a space of (see the ABAQUS Use moda list ; mod	and the complete list) and the complete list)	A L
where an <i>option</i> can be nset set_name tracer set_name where a <i>list</i> must be one of: all preselec <i>keys</i> where <i>keys</i> is a space do (see the ABAQUS Use moda <i>list</i> ; mod	all energy variables ber's Manual for the complete list) de variables node set tracer all energy variables list of variables list of variables belimited list of variable names ber's Manual for the complete list) odal variables all energy variables	A L
where <i>keys</i> is a space of (see the ABAQUS Use node options list ; nod where an option can be nset set_name tracer set_name where a list must be one of: all preselec <i>keys</i> where <i>keys</i> is a space of (see the ABAQUS Use moda list ; mod where a list must be one of: all preselec	er's Manual for the complete list) de variables * N O D A OUTPUT node set tracer all energy variables preselected variables list of variables lelimited list of variable names er's Manual for the complete list) odal variables *MODAL OUTPU all energy variables preselected variables	A L
where <i>keys</i> is a space of (see the ABAQUS Use node options list ; nod where an option can be nset set_name tracer set_name where a list must be one of: all preselec <i>keys</i> where <i>keys</i> is a space of (see the ABAQUS Use moda list ; mod where a list must be one of: all preselec <i>keys</i> where a list must be one of: all preselec <i>keys</i>	and the end of variable names ar's Manual for the complete list) de variables * N O D A OUTPUT node set tracer all energy variables preselected variables list of variables lelimited list of variable names er's Manual for the complete list) odal variables *MODAL OUTPU all energy variables preselected variables list of variables spreselected variables list of variables	Τ
where keys is a space of (see the ABAQUS Use node options list; nod where an option can be nset set_name tracer set_name where a list must be one of: all preselec keys where keys is a space of (see the ABAQUS Use moda list; mod where a list must be one of: all preselec keys where keys is a space of where keys is a space of all preselec keys where keys is a space of where keys is a space of here keys	all energy variables and so the complete list) and set output node set tracer all energy variables list of variables list of variables all inted list of variable names or's Manual for the complete list) all energy variables preselected variables bodal variables spreselected variables list of variables bodal variables list of variables	Υ
where keys is a space of (see the ABAQUS Use node options list ; nod where an option can be nset set_name tracer set_name where a list must be one of: all preselec keys where keys is a space of (see the ABAQUS Use moda list ; mod where a list must be one of: all preselec keys where keys is a space of (see the ABAQUS Use	er's Manual for the complete list) de variables * N O D A OUTPUT node set tracer all energy variables preselected variables list of variables lelimited list of variable names er's Manual for the complete list) odal variables *MODAL OUTPU all energy variables preselected variables list of variables spreselected variables preselected variables list of variables spreselected variables list of variables list of variables list of variables list of variables lelimited list of variable names er's Manual for the complete list)	T
where keys is a space of (see the ABAQUS Use node options list ; nod where an option can be nset set_name tracer set_name where a list must be one of: all preselec keys where keys is a space of (see the ABAQUS Use moda list ; mod where a list must be one of: all preselec keys where keys is a space of (see the ABAQUS Use radi options list ; radiatio	er's Manual for the complete list) de variables * N O D A OUTPUT node set tracer all energy variables preselected variables list of variables lelimited list of variable names er's Manual for the complete list) odal variables *MODAL OUTPU all energy variables preselected variables list of variables spreselected variables list of variables spreselected variables list of variables str's Manual for the complete list) n variables *RADIATION OUTPU	T

cavity name	cavity	
elset set_name	element set	
surface surface_nam	e surface	
where a <i>list</i> must be one of	f:	
all	all radiation variables	
preselec	preselected variables	
keys	list of variables	
where keys is a spa	ce delimited list of variable names	
(see the ABAQUS	User's Manual for the complete list)	
ener option list ;	energy variables *ENERGY O	UTPUT
where option can be		
elset set_name	element set	
where a <i>list</i> must be one of	f:	
all	all energy variables	
preselec	preselected variables	
keys	list of variables	
where <i>keys</i> is a spa	ce delimited list of variable names	
(see the ABAQUS	User's Manual for the complete list)	

This command is used to define each time/history step. It can be repeated as many times as needed. There are several components to each step. The step number and the procedure are required.

- 1. step number
- 2. procedure
- 3. procedural options
- 4. associated distributed loads
- 5. associated concentrated loads
- 6. data files
- 7. results files
- 8. field output options
- 9. history output options

Since this command is very complex, it is advised to use the dialogue box interactively to generate this command. The information in this manual is intended to help you if you need to modify this command once it was generated from the dialogue box and placed into the session file. Another good reason to use the dialogue box is that the variable names (*keys*) for the different data, results, and output options can be selected from a list. The variable names (*keys*) are not listed here since there are many of them and can be found in the ABAQUS User's Manual.

There are 13 procedures to select from. Each procedure has a set of required parameters and additional options.

buckle to create	*BUCKLE
ctd to create	*COUPLED TEMPERATURE-DISPLACEMENT
dynamic to create	*DYNAMIC
frequenc to create	*FREQUENCY
geostati to create	*GEOSTATIC
heat to create	*HEAT TRANSFER
moddyn to create	*MODAL DYNAMIC
random to create	*RANDOM RESPONSE
response to create	*RESPONSE SPECTRUM
soils to create	*SOILS
static to create	*STATIC
ssdyn to create	*STEADY STATE DYNAMIC
visco to create	*VISCO

The procedure definition is followed by options which are listed and characterized below:

Procedural options	
amplitude for the amplitude type	
cycle for the maximum iterations in an increment	
inc for the maximum increments in a step	
linear for linear analysis stiffness matrix formation type	
monotoni for monotonic	
nlgeom for geometric non-linearity	
rottol tol for maximum increment of rotation	
submax to suppress subdivisions	
Associated distributed facial loads abdload identifies which distributed loads are to be included for this step. Use the pr and pri commands to select faces and amplitudes. Use the lcd and flcd commands to define the amplitude curves.	*DLOAD
Associated concentrated nodal loads abcload identifies which nodal loads are to be included for this step. There are many ways to select nodes for loads. Use the lcd and flcd commands to define the amplitude curves.	*CLOAD

Standard Results files (repeat any of these command as many times as is needed)

crsltf to control writing to the contact results file	*CONTACT FILE
ersltf to control writing to the element results file	*EL FILE
nrsltf to control writing to the nodal results file	*NODE FILE
mrsltf to control writing to the modal results file	*MODAL FILE
rrsltf to control writing to the radiation results file	*RADIATION FILE
srsltf to control writing to the section results file	*SECTION FILE
enrsltf to control writing to the energy results file	*ENERGY FILE

Data files requests (repeat any of these command as many time	s as is needed)
cdataf to define data file requests for contact variables	*CONTACT PRINT
edataf to define data file requests for element variables	*EL PRINT
ndataf to define data file requests for nodal variables	*NODE PRINT
mdataf to define data file requests for modal variables	*MODAL PRINT
rdataf to define data file requests for radiation variables	*RADIATION PRINT
sdataf to define data file requests for section variables	*SECTION PRINT
endataf to define data file requests for energy variables	*ENERGY PRINT

Field output options (repeat this command as many times as is needed) fielo produces the *OUTPUT card for FIELD output options and the associated *CONTACT OUTPUT, *ELEMENT OUTPUT, *NODAL OUTPUT, and *RADIATION OUTPUT.

History output options (repeat this command as many times as is needed) **histo** produces the *OUTPUT card for HISTORY output options and the associated *CONTACT OUTPUT, *ELEMENT OUTPUT, *NODAL OUTPUT, *MODAL OUTPUT, *RADIATION OUTPUT, and *ENERGY OUTPUT.

Keys is a list of variable names. The list of possible variable names in this list is different for each option and it can be large. Refer to the ABAQUS User's Manual for the appropriate list. **True***Grid*[®] does not check this list for validity.

Examples

```
abaqstep c initiate a list of ABAQUS analysis options
abstep 1 c step identification number
static .001 .01 c static analysis
mtol .0001 c timing instructions
tmmninc .0001
tmmxinc .0025
; c terminate static options list
amplitude ramp c method of applying loads
cycle 10 c iteration controls
inc 500
```

```
linear new
                 c stiffness matrix formation method
monotoni
                  c monotonic flag
                  c non linearity flag
nlqeom
cdataf
                  c contact print
     freq 2
                   c contact print parameters
    sinm msface1
    namens nodeset1
    sins ssface1
    nsum tota
    cstress cdisp sdv pfl ptl dbsf ; c variable names
cdataf
                  c contact print
    freq 4
                  c contact print parameters
    hfl ;
                  c variable names
histo
                  c history output
    freq 2
    cnew
    list elem
                  c elements output
    elset nn1
    elen elcd nforc ; c variable names
abdload blc 2 pr c activate pressure - load curve 2
abcload blc 3 fc
                  c activate forces - load curve 3
                   c terminate the ABAQUS analysis list
;
```

bm create a string of beam elements (merge phase)

bm options ;

where

option can be:

(Selection of the first node)

n1 <i>node_</i> #	to make an existing node the first node of the beams.
pm1 <i>point_mass_</i> #	to make a point mass node the first node of the beams.
rt1 <i>x y z const ;</i>	to create the first node of the beams in Cartesian coordinates.
cy1 $\rho \theta z const$;	to create the first node of the beams in cylindrical coordinates.
sp1 ρ θ ϕ <i>const</i> ;	to create the first node of the beams in spherical coordinates.
(Selection of t	he second node)
n2 <i>node_</i> #	to make an existing node the last node of the beams.
pm2 <i>point_mass_</i> #	to make a point mass the last node of the beams.
rt2 <i>x y z const ;</i>	to create the last node of the beams in Cartesian coordinates.

$cy2 ho \ \theta \ z \ const$;	to create the last node of the beams in cylindrical coordinates.
sp2 $ρ$ θ φ const ;	to create the last node of the beams in spherical coordinates.
(Selection of	f the orientation)
n3 <i>node_</i> #	to make an existing node the last node of the beams.
pm3 point_mass_#	to make a point mass the last node of the beams.
rt3 $x y z const$;	to create the last node of the beams in Cartesian coordinates.
cy3 ρ θ <i>z</i> const ;	to create the last node of the beams in cylindrical coordinates.
sp3 ρ θ φ <i>const</i> ;	to create the last node of the beams in spherical coordinates.
orient x y z	to specify a coordinate triple to orient the beams.
sd surface_#	to orient beam axes in the orientation of the normal of the surface
v x y z	to orient beam axes in the direction of the vector
(Misc. optio	ns)
mate <i>material_</i> #	to specify the material number.
cs cross_section_#	to specify the cross section number (see bsd).
nbms <i>number_of_beams</i>	to specify the number of beams in the string (default is 1).
indc const ;	to specify the constraints on the intermediate nodes.
cur <i>3d_curve_</i> #	to interpolate the string of beams along a 3D curve.
(Selection of	f the nodal spacing)
res geometricratio	for relative spacing of nodes (default is equal spacing).
drs first_geometricratio see	cond_geometricratio
	for double relative spacing of nodes.
nds nodal_distribution_fun	ction_#
	for nodal distribution by a function.
as 0 first_thickness	first element thickness
as 1 last_thickness	last element thickness
das first_element_thickness	s last_element_thickness
	first and last element thickness
sthi sthi	for thickness in the y-direction.
sthi1 sthi1	for thickness in the y-direction at the first end point.
sthi2 sthi2	for thickness in the y-direction at the last end point.
tthi <i>tthi</i>	for thickness in the z-direction.
tthi1 tthi1	for thickness in the z-direction at the first end point.
tthi2 tthi2	for thickness in the z-direction at the last end point.

csarea csarea	for the cross section area
sharea sharea	shear area
inertia Iss Itt Irr	inertia moments
vold volume	volume of Discrete Beam
lump inertia	lumped inertia
cablcid system_#	local coordinate system id number defined by the lsys
cabarea area	cable area
caboff offset	cable offset

(Selection of the nodal offsets)

noint	for no interior node offset interpolation
roff1 roff1	for x-component of offset vector for first end point.
soff1 soff1	for y-component of offset vector for first end point.
toff1 toff1	for z-component of offset vector for first end point.
roff2 roff2	for x-component of offset vector for last end point.
soff2 soff2	for y-component of offset vector for last end point.
toff2 toff2	for z-component of offset vector for last end point.

(Selection of the pin flags)

ldr1 ldr1	to release the x-translation constraint at first end point.
lds1 lds1	to release the y-translation constraint at first end point.
ldt1 ldt1	to release the z-translation constraint at first end point.
lrr1 lrr1	to release the rotation constraint about the x-axis at first end point.
lrs1 lrs1	to release the rotation constraint about the y-axis at first end point.
lrt1 lrt1	to release the rotation constraint about the z-axis at first end point.
ldr2 ldr2	to release the x-translation constraint at first end point.
lds2 <i>lds2</i>	to release the y-translation constraint at first end point.
ldt2 <i>ldt2</i>	to release the z-translation constraint at first end point.
lrr2 lrr2	to release the rotation constraint about the x-axis at first end point.
lrs2 lrs2	to release the rotation constraint about the y-axis at first end point.
lrt2 <i>lrt2</i>	to release the rotation constraint about the z-axis at first end point.
ldr3 ldr3	to release the x-translation constraint at first end point.
lds3 lds3	to release the y-translation constraint at first end point.

ldt3 ldt3	to release the z-translation constraint at first end point.
Irr3 lrr3	to release the rotation constraint about the x-axis at
	first end point.
lrs3 lrs3	to release the rotation constraint about the y-axis at
	first end point.
lrt3 lrt3	to release the rotation constraint about the z-axis at
	first end point.
ldp displacement	for the initial longitudinal displacement.
theta angle	for the orientation angle for the cross section.
warpage first_warpage_not	de second_warpage_node
	for two nodes used to determine warpage in the beam.

where *const* can be any of

dx	to constrain the x-displacement
dy	to constrain the y-displacement
dz	to constrain the z-displacement
rx	to constrain the x-axis rotation
ry	to constrain the y-axis rotation
rz	to constrain the z-axis rotation

Remarks

There are many options to this command. However, many of the options are specific to a single simulation code. There is some overlap, but there is little consistency among the simulation codes on beam element properties. Care must be taken in selecting the options by knowing the options needed for the target simulation code. The dialogue box makes these selections easier.

This command is functional in the Merge Phase, and it is designed to create a general collection of beams or a single beam. We recommend that you use the dialogue box for **bm**.

You can use an existing node of the mesh for a beam, specify coordinates to create a new node for a beam, or you can use a point mass as a node for a beam. Coordinates can be specified in Cartesian, cylindrical, or spherical coordinates.

Beam orientation can be defined using a third node, using a point mass, or by creating another node in Cartesian, cylindrical, or spherical coordinates. Use the output-code specific options in the MATERIAL Menu of the Control Phase to define materials for the beams.

Use the **bsd** to define a beam cross-section type.

Nodes are automatically created if the number of beams specified is greater than 1.

You can define beam elements that follow a 3D curve, and specify the number of such elements, along with a spacing rule for the intermediate nodes.

Optional thickness parameters may be specified for the first and last beams when creating multiple beams. Intermediate beams will have thicknesses that are interpolated from the end beams. You may specify offsets for the first and last nodes, and optionally interpolate these offsets to intermediate nodes.

Constraints which couple the beams to the existing mesh can be eliminated. This may be done separately for the first, last, and intermediate nodes. An initial longitudinal displacement can be specified. An optional orientation angle can be specified. Warpage nodes can be defined for codes which support such options. **Bend** geometry options can be specified for codes which support such options.

bsd global beam cross section definition

bsd cross_section_# cstype t_o	ptions ;;
where <i>type</i> and <i>t_options</i> can be:	
7 $t_{options}$;	for PIPE
where <i>t_options</i> can be	
abcs1 radius	radius of the pipe
abcs2 thickness	wall thickness
nabip1 #_integration	S
trss stiffness	
abtemp Temperature	
8 $t_{options}$;	for BOX
where <i>t_options</i> can be	
abcs1 width	
abcs2 height	
abcs3 thickness	
abcs4 thickness	
abcs5 thickness	
abcs6 thickness	
nabip1 #_integration	S
nabip2 #_integration	S
trss stiffness	
abtemp Temperature	
9 $t_{options}$;	for CIRCLE
where <i>t_options</i> can be	
abcs1 radius	
nabip1 #_integration	S

nabip2 # integrations trss stiffness abtemp temperature for I-BEAM **10** t options ; where t options can be abcs1 depth abcs2 height abcs3 width abcs4 width abcs5 thickness abcs6 thickness Abcs7 thickness **nabip1** # integrations **nabip3** # integrations trss stiffness abtemp temperature 11 t options; for **RECTANGLE** where *t* options can be abcs1 width abcs2 height **nabip1** # integrations **nabip2** # *integrations* trss stiffness **abtemp** *temperature* 12 t options; for HEXAGON where *t* options can be abcs1 thickness abcs2 thickness **nabip1** # *integrations* **nabip2** # integrations trss *stiffness* abtemp *temperature* for ELBOW 13 t options; where *t* options can be abcs1 radius abcs2 thickness abcs3 radius **nabip1** *# integrations* **nabip2** *#_integrations* **nabip3** # integrations trss stiffness

```
abtemp temperature
                            for TRAPEZOID
14 t options;
 where t options can be
      abcs1 width
       abcs2 height
      abcs3 width
      abcs4 depth
      nabip1 # integrations
      nabip2 # integrations
      rss stiffness
      abtemp temperature
                            for I-SECTION
15 t options;
 where t options can be
       abcs1 width
       abcs2 height
       abcs3 thickness
       abcs4 thickness
       nabip1 # integrations
       nabip2 # integrations
      trss stiffness
       abtemp temperature
16 t options;
                            for ARBITRARY
 where t_options can be
       cscrv y1 z1 ... yn zn ;
       cssth thick1 ... thickn ;
       trss stiffness
       abtemp temperature
```

Choose any positive integer for the identification number (*cross_section_#*). This number is used to reference the cross section definition within the **bm**, **ibm**, **ibm**, **jbm**, **jbm**, **kbm**, and **kbm**i commands.

ibm generate beams in the i-direction

ibm region #_in_j #_in_k material orientation cross_section	option
--	--------

where	
#_in_j	is the number of columns of beam elements in the j-direction
#_in_k	is the number of columns of beam elements in the k-direction
material	is the material number
orientation	is the option of orientation of the cross section axis

j	second axis orientation in the j-direction
k	second axis orientation in the k-direction
<pre>sd surface_#</pre>	second axis orientation in the normal to the surface
v xn yn zn	second axis orientation by the vector
none	

cross_section is the cross-section definition number assigned with **bsd** *option* can be

reverse	the order of the nodes is the reverse of the default
si sid_#	Sliding Interface Number
vold volume	volume of Discrete Beam
lump inertia	lumped inertia
cablcid system_#	local coordinate system id number defined by the lsys
cabarea area	cable area
caboff offset	cable offset
csarea area	cross section area
sharea area	shear area of cross section
inertia iss itt irr	cross section moments of inertia
thickness	thickness (Hughes-Liu)
roff1 x	x-component of offset vector for first end point.
soff1 y	y-component of offset vector for first end point.
toff1 z	z-component of offset vector for first end point.
roff2 x	x-component of offset vector for last end point.
soff2 y	y-component of offset vector for last end point.
toff2 z	z-component of offset vector for last end point.
ldr1	release the x-translation constraint at first end point.
lds1	release the y-translation constraint at first end point.
ldt1	release the z-translation constraint at first end point.
lrr1	release the rotation constraint about the x-axis at first end point.
lrs1	release the rotation constraint about the y-axis at first end point.
lrt1	release the rotation constraint about the z-axis at first end point.
ldr2	release the x-translation constraint at last end point.
lds2	release the y-translation constraint at last end point.
ldt2	release the z-translation constraint at last end point.
lrr2	release the rotation constraint about the x-axis at last end
	point.
lrs2	release the rotation constraint about the y-axis at last end point.

lrt2	release the rotation constraint about the z-axis at last end point.
ldr3	release the x-translation constraint at intermediate point.
lds3	release the y-translation constraint at intermediate point.
ldt3	release the z-translation constraint at intermediate point.
lrr3	release the rotation constraint about the x-axis at intermediate points.
lrs3	release the rotation constraint about the y-axis at intermediate points.
lrt3	release the rotation constraint about the z-axis at intermediate points.
theta θ	orientation angle for the cross section.
warpage n1 n2	two nodes used to determine warpage in the beam.
geom option	method of determining curvature
where option of	can be
1 for c	enter of curvature
2 for ta	angent of centroid arc
3 for b	end radius
4 for a	rc angle

This command is available only in the **block** or **cylinder** Part Phase. This command generates an array of beam elements conforming to the geometry and nodes of a solid or shell regions in the i-direction.

This feature is useful in generating structural elements embedded within the solid or shell region.

The local coordinate orientation can be selected in many ways or none at all.

The v option specifies a vector for the orientation. That vector is defined by the coordinate system. If the part is a cylinder, the vector is in the form of a radial, angular, and z-offset. Depending on the coordinates of the beam, the cylindrical vector will define a different orientation for each beam since the vector offset is made in cylindrical coordinates and then transformed to Cartesian coordinates. Each beam element can have an additional third node used to determine the orientation of the cross-section and local material coordinate system. The neighboring beam elements can be used to select the orientation node. The options **i**, **j**, or **k** will select the node of the corresponding neighboring beam element. In each case, only two of the options are appropriate.

The **sd** option is used to orient the beam normal to a surface. The **v** option creates an orientation in a given vector direction. In the latter two cases, a new node is created for each beam, when nodes are required to orient beams. Use the **orpt** command when using the **sd** option.

To define the cross-section, use the **bsd** command.

A 1D sliding interface can be specified for each string of beams. Only the first sliding interface is specified. The remainder are assumed to follow in sequence. Use **sid** command to define each sliding interface.

```
sid 1 rebar;;sid 2 rebar;;sid 3 rebar;;sid 4 rebar;;
block 1 3 5;1 3 5;1 3 5;1 3 5;1 3 5;1 3 5;
ibm 1 1 1 3 3 3 2 2 1 j si 1 1 ;
```

In the above example, 4 rebar sliding interfaces are generated between 4 strings of beam elements and the corresponding brick elements, respectively. Since this is a sliding interface, there are new nodes automatically generated for the beam elements so that the beams are not coupled to the solid elements except through the sliding interface. Care should be taken not to merge these additional nodes out in the merge phase. They automatically will not be merged with their equivalent solid element nodes with the same coordinates, but they can be merged to other parts of the mesh. Use dummy sliding interfaces to control the merging.

Many of the options are designed for a specific simulation code or for a specific beam type. There is some overlap in that some of the options are used for several different types or simulation codes. Because of this complexity, you are advised to use the dialogue box to make your selection of options when using this command. The options override the properties given by the **bsd**. See also **bm**, **bsd**, and **orpt** commands.

ibmi generate beams in the i-direction by index progression

ibmi progression #_in_j #_in_k material orientation cross_section option

Remarks

See ibm for the details and remarks.

jbm generate beams in the j-direction

jbm region #_in_i #_in_k material orientation cross_section option

Remarks

See ibm for the details and remarks.

jbmi generate beams in the j-direction by index progression

jbmi progression #_in_i #_in_k material orientation cross_section option

Remarks

See ibm for the details and remarks.

kbm generate beams in the k-direction

kbm region #_in_i #_in_j material orientation cross_section option

Remarks

See ibm for the details and remarks.

kbmi generate beams in the k-direction by index progression

kbmi progression #_in_i #_in_j material orientation cross_section option

Remarks

See ibm for the details and remarks.

npm creates a node with a point mass (part phase)

npm *mp_node_*# *x y z mass options ;*

where

mp_node_#	is the node number which is created,	
<i>x y z</i>	are the coordinates of the point mass,	
mass	is the assigned mass, and	
options can l	be :	
inc inc	<i>rement</i> for the increment in the node number under replication,	
dx	for no nodal displacement in the x-direction,	
dy	for no nodal displacement in the y-direction,	
dz	for no nodal displacement in the z-direction,	
rx	for no nodal rotations about the x-axis,	
ry	for no nodal rotations about the y-axis,	
rz	for no nodal rotations about the z-axis,	

mdx	for no mass displacement in the x-direction,
mdy	for no mass displacement in the y-direction,
mdz	for no mass displacement in the z-direction,
mrx	for no mass rotation about the x-axis,
mry	for no mass rotation about the y-axis,
mrz	for no mass rotation about the z-axis,
ixx mom	to specify the moment of inertia about the x-axis,
iyy mom	to specify the moment of inertia about the y-axis,
izz mom	to specify the moment of inertia about the z-axis,
pdamp alpha	for the proportional damping factor (ABAQUS), and/or
cdamp fractio	<i>n</i> for the fraction of critical damping (ABAQUS).

This new node can be attached to the mesh by creating a spring using the **spring** command in the Part or Merge Phase, or by creating a beam in the Merge Phase using the **bm** command. This new node can also be attached to the rest of the mesh in the Merge Phase by merging it to a neighboring node (see **t**, **tp**, **stp**, **bptol**, and **ptol**). This is distinguished from the assignment of a mass to a vertex of the present part. The latter can be done using the **pm** command. In both cases, the point mass is replicated or transformed along with the present part (see **lrep**, **grep**, and **pslv**). In order to create a new node and assign it a point mass such that it does not get replicated or transformed along with the present part. In order to assign a point mass to any node in the mesh such that it does not get replicated or transformed along with the present part, use the **pm** command in the Merge Phase.

npm creates a new node and assigns a point mass to it (merge phase)

npm *mp_node_*# *x y z mass options ;*

where

an option can be:

he x-direction
he y-direction
he z-direction
e x-axis
e y-axis
e z-axis
ne x-direction
ne y-direction
ne z-direction
e x-axis

mry	no mass rotations about the y-axis
mrz	no mass rotations about the z-axis
ixx mom	specify the moment of inertia about the x-axis
iyy mom	specify the moment of inertia about the y-axis
izz mom	specify the moment of inertia about the z-axis
pdamp alpha	proportional damping factor (ABAQUS)
cdamp fraction	fraction of critical damping (ABAQUS)

This newly created node is separate from the existing mesh and can be attached by generating a beam or spring using this new node (see **bm** or **spring**). It can also be attached to the rest of the mesh by merging it to a neighboring node (see **t**, **tp**, **stp**, **bptol**, and **ptol**). This is distinguished from assigning a mass to an existing node of the mesh. The latter can be done using the **pm** command. To create a new node and assign it a point mass such that it is replicated or transformed along with the part, then use the **npm** command in the Part Phase (see **lrep**, **grep**, and **pslv**). To assign a point mass to a vertex of a part such that it is replicated or transformed along with the part, use the **pm** command in the Part Phase. All of the options are not needed by all output options.

offset

add offset to numbered entities in the output

offset type offset	
where <i>type</i> can be	
nodes	node numbers
bricks	brick elements (or all elements)
nsetoff	node sets if they are automatically numbered (not named)
fsetoff	face sets if they are automatically numbered (not named)
esetoff	element sets if they are automatically numbered (not named)
partoff	parts

Remarks

The **nodes**, **bricks**, **nsetoff**, **esetoff**, **partoff**, and **nsetoff** options affect the automatically numbered node sets as a result of the **fc**, **fd**, **fv**, **ft**, **acc**, and **mom** nodal boundary conditions. **Esetoff** affects the automatically numbered element sets as a result of the **pr** condition. **Partoff** affects the automatic numbering of element sets based on the part number.

plane define a boundary plane

plane plane_ $\# x_0 y_0 z_0 x_n y_n z_n$ tolerance symm

This command is used to define nodal constraints for nodes on a symmetry plane. The point (x_0, y_0, z_0) is on the symmetry plane with a normal vector (x_n, y_n, z_n) . Nodes are automatically selected for the symmetry plane constraint if they are within the specified tolerance of the plane.

The symmetry feature is complicated, depending on the type of plane and the simulation code. If the symmetry plane is parallel to one of the planes where x=0, y=0, or z=0, then the nodes on the symmetry plane are assigned constraints in the global coordinate system. These types of symmetry planes are referred to as canonical symmetry planes and are equivalent to the following constraints:

plane parallel to x=0: x-displacement, y-rotation, z-rotation plane parallel to y=0: y-displacement, x-rotation, z-rotation plane parallel to z=0: z-displacement, x-rotation, y-rotation

Nodes on non-canonical symmetry planes are constrained in local coordinate systems.

pm point mass to a vertex of the present part (part phase)

pn region node_mass options ;

where	
node_mass is the a	ssigned mass, and
options can be :	
mdx	for no mass displacement in the x-direction,
mdy	for no mass displacement in the y-direction,
mdz	for no mass displacement in the z-direction,
mrx	for no mass rotations about the x-axis,
mry	for no mass rotations about the y-axis,
mrz	for no mass rotations about the z-axis,
ixx mom	to specify the moment of inertia about the x-axis,
iyy mom	to specify the moment of inertia about the y-axis,
izz mom	to specify the moment of inertia about the z-axis,
pdamp alpha	for the proportional damping factor (ABAQUS), and/or
cdamp fraction	<i>n</i> for the fraction of critical damping (ABAQUS).

Remarks

This is distinguished from a node which is created separate from the mesh, assigned a mass, and then later attached to the mesh by a beam or spring. This latter type of point mass is created using the **npm** command, above. The **pm** point mass is replicated along with the present part (see **lrep**, **grep**,

and **pslv**). In order to assign a point mass to any node in the mesh such that it does not get replicated or transformed along with the present part, use the **pm** command in the Merge Phase. In order to create a new node and assign it a point mass such that it does not get replicated or transformed along with the present part, then use the **npm** command in the Merge Phase.

pm assigns a point mass to a node of the mesh (merge phase)

pm node_# mass otions ;	
where	
an <i>option</i> can be:	
mdx	no mass displacement in the x-direction
mdy	no mass displacement in the y-direction
mdz	no mass displacement in the z-direction
mrx	no mass rotations about the x-axis
mry	no mass rotations about the y-axis
mrz	no mass rotations about the z-axis
ixx mom	specify the moment of inertia about the x
iyy mom	specify the moment of inertia about the y
izz mom	specify the moment of inertia about the z
pdamp alpha	proportional damping factor (ABAQUS)
cdamp fraction	fraction of critical damping (ABAQUS)

Remarks

This is distinguished from creating a new node separate from the mesh and assigning a mass to it. The latter can be done using the **npm** command. To assign a point mass to a vertex within a part such that it is replicated or transformed along with the part, use the **pm** command in the Part Phase (see **lrep**, **grep**, and **pslv**). In order to create a new node and assign it a point mass such that it is replicated or transformed along with a part, then use the **npm** command in the Part Phase. All of the options are not needed by all output options.

sid sliding interface definition

where a *param* can be

```
sid slide # option ;
```

where the *option* can be **dummy** sv dni inter params

nodes in this interface will not be merged sliding with voids discrete nodes impacting surface interface elements

x-axis y-axis z-axis fric friction_factor fric2 friction_factor stif stiffness essl stress static coefficient of friction anisotropic friction coefficient stiffness in stick equivalent shear stress limit

Remarks

Sliding interfaces or contact surfaces are constructed in 3 steps. These steps can be done in any order.

- 1. define the properties
- 2. select the slave side
- 3. select the master side

The **sid** command is used to define the properties. The **si** and **sii** commands are used in the part phase or the merge phase to select the nodes or faces that form the master and slave sides of the interface.

Alternative to using the **sid**, **si**, and **sii** commands, one can construct a face set. This will be written to the output file as a set. Then it is a simple matter to add the keyword command to the output file using a text editor to transform that set into a contact surface or sliding interface. This approach has the problem that nodes may be merged across the two sides because they are not defined as sliding interfaces.

When nodes are merged, nodes across a sliding interface will not be merged. When a merge command is first issued in the merge phase, a table is written listing the number of nodes and faces associated with each sliding interface.

The **dummy** type interface is actually used to avoid merging of nodes. A sliding interface of this type is not written to the output file.

The nodes and faces of a sliding interface or contact surface can be viewed in the merge phase using the **si** option of the **co** command.

si assign sliding interface to region (part phase)

si region sliding_# type where sliding_# reference number for the interface where type can be **m** for master **s** for slave

This command, and its relative **sii**, specify that faces in the mesh are part of a sliding interface. You can use these commands to assign a shell or brick face to a sliding interface definition. In order to define the properties of the sliding interface, first use the command **sid**. **Sid** defines the properties of the sliding interface to in **si** and **sii**.

Surfaces from 3D solid brick elements have an obvious orientation pointing outward. However, this is not the case with sliding interfaces on 2D shell surfaces. You can provide information about how to orient them. That is the purpose of the **orpt** command.

During the node merging process using, using **stp** for example, **True***Grid*[®] will not merge nodes on opposite sides of a sliding interface.

Use the merge phase command **co** with the **si** option to view the numbered sliding interfaces and their orientation.

si select nodes or faces for a sliding interface (assembly phase)

si fset fac_set interface_# type ;

where *type* can be one of

m	master side of the interface
S	slave side of the interface

Remarks

The global properties of a sliding interface are defined using the **sid** command. The dummy sliding interface type, is used to control the merging without the side effect of causing a sliding interface definition in the output.

Use the **fset** or **fseti** commands to create a face set. You can also use the interactive set selection feature in the merge phase found in the Environment window with the *Pick* and *Sets* buttons.

sii assign sliding interfaces (part phase)

sii progression sliding_# type
where type can be
 m for master
 s for slave

Remarks

See the **si** (part phase) remarks.

IV. INDEX

*ACOUSTIC MEDIUM
*AMPLITUDE
*BEAM SECTION
*BOUNDARY
*BUCKLE
*CLAY PLASTICITY6
*CLOAD6, 26, 34
*CONCRETE
*CONDUCTIVITY
*CONTACT FILE
*CONTACT NODE SET7
*CONTACT OUTPUT 7, 30, 31, 35
*CONTACT PAIR
*CONTACT PRINT
*COUPLED TEMPERA
*CREEP
*CYCLED PLASTIC
*DAMPING
*DEFORMATION PL
*DENSITY
*DEPVAR
*DLOAD
*DRUCKER PRAGER7
*DYNAMIC
*EL FILE
*EL PRINT
*ELASTIC
*ELEMENT
*ELEMENT OUTPUT7, 30, 32, 35
*ELSET
*END STEP
*ENERGY FILE
*ENERGY OUTPUT
*ENERGY PRINT 7, 30, 35
*EQUATION
*EXPANSION
*FAILURE RATIOS7
*FREQUENCY
*FRICTION7
*GEOSTATIC

*HEADING
*HEAT GENERATION7
*HEAT TRANSFER
*HYPERELASTIC
*HYPOELASTIC8
*INELASIC HEAT8
*INITIAL CONDITIONS8
*LATENT HEAT8
*MASS
*MATERIAL 8
*MEMBRANE SE 8
*MODAL DY
*MODAL DYNAMIC
*MODAL FILE
*MODAL OUTPUT
*MODAL PRINT
*NO COMPRESSION
*NO TENSION 8
*NODAL OUTPUT
*NODE
*NODE FILE
*NODE OUTPUT
*NODE PRINT
*NSET
*ORIENTATION
*ORNL
*OUTPUT
*OUTPUT, FIELD
*PERMEABILITY
*PLASTIC
*POROUS BULK
*POROUS ELAS
*POTENTIAL
*RADIATION FILE
*RADIATION OUTPUT 8, 31, 32, 35
*RADIATION PRINT 8, 29, 35
*RANDOM RESPONSE 8, 25, 34
*RATE DEPENDENT
*RATIOS
*RESPONSE SPECTRUM 8, 25, 34
, , ,

*SECTION CONTROLS	8	Ac
*SECTION FILE	8, 35	Al
*SECTION PRINT	9, 35	alp
*SHEAR RETENTION	8	am
*SHELL GENERAL SE	8	am
*SOILS	5, 34	An
*SOLID SECTION	8	aqa
*SPECIFIC HEAT	8	Aq
*STATIC	5, 34	Aq
*STEADY STATE DYNAMIC 26	5, 34	Aq
*STEADY STATE DYNAMICS	9	Aq
*STEP	9,23	Aq
*SURFACE	9	Aq
*SURFACE INTER	9	Aq
*SWELLING	9	Aq
*TENSION STIF	9	Aq
*TRANSFORM	9	Aq
*USER MATERIAL	9	Aq
*VISCO	5, 34	Ac
*VISCOELASTIC	9	Aq
20 Node Bricks	5	Aq
4 Node Shells	5	Aq
8 Node Bricks	5	Aq
8 Node Shells	5	Ac
Abaqmats		Ac
properties	6	Ac
Abaqmats material	. 18	Aq
Abaqstep	9, 23	Aq
Abaqstep analysis option	. 23	Ac
Abaqus	6	Aq
Abcload	. 34	Aq
Abcload blc	. 26	Aq
Abdload	. 34	Aq
Abdload blc	. 26	Aq
abstep	9, 12	Aq
Ac3d 7	7,18	Aq
Acc	5, 11	Aq
Accc	5, 11	Aq
Accci	5, 11	aqe
Acceleration	1,12	Aq
Acci	5, 11	Ac
Accs	5, 11	Ac
Accsi	5, 11	Ac

Ace
All
alpha
amplitud
amplitude 5, 26, 34
Anisotropic 12, 13
aqabmats8
Aqacm
Aqanswel
Aqaornl
Aqayld
Aqcdan
Aqcdis
Aqcdor
Aqclay
Aqconc
Aqcond
Aqcpsm
Aqcree
Aqctsm
Aqcycl
Aqcycl1
Aqcycl2
Agdens
Aqdepl
Agdepv
Aqdpm1
Agdpm2
Aqdpm3
Agdppm
Agdtswe
Agelan
Agelas
Agelec
Agelis
Agella
Agelor
Ageltyn 8 18
agens
Agexan
Agexis 19
Agexor 19
Agenze 10
······································

Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights ReservedMay 8, 2009TrueGrid® Output Manual For ABAQUS®

.....

Aqfara	Aqsepp 3 20
Aqfcdf	Aqsepp 4 20
Aqfr 1	Aqseps
Aqfr 2 21	Aqshcre
Agfr 3 21	Aqshrt1 21
Aqfr 4	Aqshrt2 21
Agheat	Aqshrt3 21
Aqhornl	Aqshrt4
Aghscre	Aqslgr
Aqhyper	Aqspdf
Aqhypo	Aqspec 19
Aqinelst	Aqsret
Agint	Aqswel
Aqishrd	Aqsww
Aqkihard	Aqtens9, 21
Aqlath	Aqthcre
Aqmornl	Aqtherm 19
Aqmpmf	Aqumsy
Aqmstr	Aqumusy
Aqnocs	Aquscre
Aqnoint	Aqusmt
Aqnots	Aqusswe
Aqnpm	Aqvisc1
Agorient	Aqvisc2
Aqornl	Aqvisc3 22
aqpbmptr	Aqvisco
aqpddm	Aqvoid
Aqperm	b 5, 6, 10
Aqplas	B3
Aqpore	B3h
Aqporf	B3os7, 19
Aqporo	B3osh7, 19
Aqpran	beam
Aqprfl	Beams 5, 13
Aqpris	create
Aqprny1	Bi 5, 6, 10
Aqprny2 22	Block 5, 8
Aqpror	Bm 5, 8, 13, 36, 42, 45
Aqrdvp	npm
Aqrornl	Bold
Aqsepp 1 20	syntax 5, 17
Aqsepp 2	Boundary conditions

	si 52	Condition6
E	Bptol	Conditions6
	npm	consolid
E	Brackets	Constraints
E	Bricks	display6
E	Bsd 5, 6, 13, 40, 45	Cont
	bm	Contact
	Ibm	Contact Surface
b	uckle	faces
C	C3d	gap
C	² 3de	graphics
C	² 3dh	initial penetration
C	² 3dht	merged nodes
0	C3di 7, 18	mesh density
(C3dih 7, 18	orientation
(² 3dm 7, 18	replication9
(C3dmh 7, 18	sets
(C3dmht 7, 18	table
(C3dmn 7 18	type
(C3dmph 7 18	Contact surfaces
(C3dmt 7, 18	si
(C3dn 7 18	sii
($\mathbf{3dnh} \qquad \qquad 7 \ 18$	Cpset
(C3dr 7 18	Crep1
('3dre 7 18	Cross section
0	'3drh 7 18	Crsltf
0	'3drht 7 18	Ctd
C	'3drn 7 18	cvcle 9.26.34
0	'3drnh 7 18	Cylinder
C	³ 3drt 7 18	Danc 28
C	'3dt 7 18	Dann 28
C	add 30	Daxc 30
C	avi 28 29	Daxe2 28
C	avity 33	Daxel 28
C	dataf 7 14 28 35	Daxn 30
C	[ent] [30]	Daxn2 28
C	entroid 22	Daxnl 28
C	Yetol 23 26	Dc3d 7 18
C	new 30	Dc3de 7 18
C C	δο 6 10	Dcc3d 7 18
C	si 57	Dec3dd 7 18
C	Sommand 17	dead
C C	Concentrated loads 10 12	Deltmx
•		

May 8, 2009

	Daxc2
33	Daxcl
7, 14, 28, 35	Daxn
30	Daxn2
	Daxnl
23, 26	Dc3d
30	Dc3de
6, 10	Dcc3d
52	Dcc3dd
17	dead
10, 12	Deltmx
Copyright © 2006	by XYZ Scientific Applications, Inc. All Rights Reserved
y 8, 2009	True <i>Grid®</i> Output Manual For ABAQUS®

direct
Dirw
Displacement
Distributed loads
Dom
Ds
Dummy interface
dynamic
Edataf
Elem
Element
numbering6
selection
set
Elesn
Elset 30-33
Endataf 7 14 30 35
Endcon 24.25
Ener 33
Enhanced 22
Enrsltf 14 28 35
Ersltf 7 14 27 35
Eset
Eseti 6.7
Examples 17
explicit 23 24 26
Face
set
Face set
Fc 6, 10, 12, 26
Fcc
Fcci
Fci
Fcs
Fcsi
Fd 6, 11, 12, 26
Fdc
Fdci
Fdi
Fds
Fdsi
Fielo

Flcd
Fmode 27-29
fonts
Force
Freq 27-31
Frequenc
frequency
Friction
Fset
fseti
Ft
Fti
Fv 6, 11, 12, 26
Fvc
Fvci
Fvi
Fvs
Fvsi
Fvv
Fvvc
Fvvci
Fvvi
Fvvs
Fvvsi
Geostati
Glob
Grep
npm
pm
Gsii
Haftol
heat
Hexahedral
Histo
Hourglas
Ibm 5 6 13 42
Ibmi 5 13 42 45
Imode 27 28 31
Implicit
Inc 9 26 34
initial 5 24
Initial no 25
111111111 110

Initial temperature
Initial yes
Integ
Interface elements
Italicized
syntax
Jbm
Jbmi 5, 13, 42, 46
Jd6,7
Jmode
Joints
Jt 6-8
Kbm 5, 13, 42, 46
Kbmi5, 13, 42, 46
Keyword
Keywords
Kinsplit
Laxe
Lcd 5, 6, 12
linear
Linear new
Linear old
List
live
Load curve
Load curves
Loads
display
Local constraints 10
Local system
Lrep
npm
pm
Ls11
M3d
M3dr
Mass
Mass point
Master
Material
Material
coordinate system 12, 13
properties

Maxit
Mdataf
Merge
dummy interface
Merged nodes 6, 10, 14, 51
Mesh density
Mns
Moddyn 8 25 34
mom 6 11 12 26
Moment 6
Moments 11 12
Momi 6 11
monitoni
Monotoni 26.34
$Mnc \qquad \qquad$
$M_{rel} = 14 \ 27 \ 25$
$mra1tf \qquad \qquad$
IIIISIU
WIL
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Mitol 23-26
Mulpiple point constraints
Multiple point constraints
N
shell orientation
Namees
Namens 27-29
Ndataf
Ndl11, 12
Ndli11
Nlgeom
No
Nocreep
Node
constraints
merged nodes6
merging sliding interface
numbering
set
temperature
Nodes
Noglob 27
Nohaf 24
Normal vector 12

Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights ReservedMay 8, 2009TrueGrid® Output Manual For ABAQUS®

Npm 6, 8, 13, 46, 47
pm
nrsltf 14
nrsltf
Nset 6, 8, 9, 14, 30-32
Nseti
Nsum
Nupd
Nvecs
Offset
Oni
Or 12, 13
Orientation
Orpt
beam
si 52
Orthogon
Orthotropic 12, 13
Output
Part 5, 6
Pick button
Pipe3
Pipe3h
Plane 5, 6, 10, 48
Pm 6, 8, 13, 49, 50
npm
Pmi
Point mass
npm
pm
Posi
Position
Pr6, 7, 11, 12, 26
Pramp 6, 11, 12
Preselec 30-33
Presrate
Pressure
Pri 6, 7, 11, 12
Prism
Procedure
Progression
Properties

	display	у.													. 6
Pslv															. 9
	npm												4	7,	48
	pm.												4	9,	50
Ptol	1													-	
	npm												4	7,	48
Ouadra	tic														. 5
Radi .													3	1.	32
random												8.	2	5.	34
Rdataf										8	1	4.	2	9.	35
Reba			•••	•••	•••	•	•••	•	•••	Ο,	-	••	2	7	29
Rehar		•••	•••	•••	••	•	•••	•	•••	•••	ר	1	3	2	45
Region		•••	•••	•••	•••	•	•••	•	•••	•••	5	1,	5	2,	17
Relay	• • • •	•••	•••	•••	•••	•	•••	•	•••	• •	•	•••	•	•••	22
Remarl	• • • • • •	•••	•••	•••	• •	•	•••	•	•••	• •	•	•••	•	•••	17
Renlica	tion	•••	•••	•••	• •	•	•••	•	•••	• •	•	•••	•	•••	0
rospone		•••	•••	••	•••	•	•••	•	•••	• •	•	• • •	ว	 5	· > 21
Diaid h	odym			•••	•••	•	•••	•	•••	• •	•	ο,	2	5,	54
Rigiu U Dototio	ouy m n	0110	11	•••	••	•	•••	•	•••	• •	•	•••	·	 5	. 5
Rotatio	11	•••	•••	•••	•••	•	•••	•	•••	• •	•		ว	з, с	10
Rollol Dualte		•••	•••	•••	••	·	•••	•	•••	•••	•	9, ₄	2	о, 7	34
Krsiti	• • • • •	•••	•••	•••	• •	•	•••	•	•••	δ,	1	4,	2	7, 7	33
S	 1	•••	• •	•••	•••	·	•••	•	•••	• •	•	•••	·	/,	18
Scontro	ol	•••	•••	•••	••	•	•••	•	•••	• •	•	•••	•	8,	22
sd	1														
~ 1 0	beam	•••	•••	•••	••	•	• •	•	•••	•••	•	•••	•	•••	44
Sdataf	• • • • •	•••	••	•••	• •	·	•••	•	• •	8,	1	4,	2	9,	35
Semi-c	olon.	•••	•••	•••	• •	•	• •	•	• •	• •	•	•••	•	•••	17
Set															
	eleme	nts	•••	•••	••	•	• •	•		• •	•	•••	•	•••	. 6
	nodes	••		••		•		•		• •	•	•••	•		. 6
Set ID										• •	•	•••			12
Sets bu	tton .					•		•			•	•••			52
Shared	constr	aint	S												14
Shared	DOF										•				. 6
Shared	nodal	con	str	ai	nts	5					•				. 6
Shell of	rientati	ion													. 5
Shell th	icknes	ss.													. 5
Shells															12
shift .															24
short .															23
Si										5-′	7.	9.	5	1.	52
	sid .					•					,	• •		•••	51
			-			-			-		ć		-	•	-

Sid6, 7, 9, 50	
beam	
si	
with si and sii	
Sii 5-7, 9, 52	
Siid	
Sin	
Sinm	
Sins	
Slave 30, 32	
Slide lines 50	
Sliding interface	
dummy interface	
si	
sii	
viewing	
Sliding Surface	
faces	
gap10	
graphics 10	
initial penetration	
merged nodes 10	
mesh density 10	
orientation	
replication	
sets	
Soils 8 25 24	
Sorder 8 22	
Spring 8 13	
nnm 47 48	
Square Brackets 17	
Square Diackets	
Sr5 7 19	
Srsltf	
Srt	
Ssdyn	
Ssf	
Ssfi	
static	
steady	
Step6, 9	

Stiffness	2
Stp	2
dummy interface	l
npm	3
si	2
Submax	4
Subspace 24	1
Surf 28.29)
Surface 6 31 33	Ż
Surface constraint))
Symmetry 5 10))
Syntax 17	, 7
T	′
dummy interface	l
npm	3
T3d7, 19)
T3de)
T3dh)
T3dt)
temp	5
Temperature	5
Temprate	1
Tetrahedral 12	2
Th	3
Thi	3
Thic 13	3
Thickness 13	Ś
Tim 3(Ĵ
Timemax 23.24	1
Timemin 23.24	1
Timmvine 2/	т 1
Title 57	т 7
Tm	5
Tmi	s
Timi	5
Timin	5
1 Imminic)
)
Tota	1
Tp	
dummy interface	1
npm	3
Tracer	2
Unsupported features)

Copyright © 2006 by XYZ Scientific Applications, Inc. All Rights ReservedMay 8, 2009TrueGrid® Output Manual For ABAQUS®

Utol
Vacc
Vaccc
Vaccci
Vacci
Vaccs
Vaccsi
Variable acceleration
Variable thickness
Variable velocity
Ve
vectors
Vei
Velocities
Velocity
initial
Verbaim
Vft6
Vfti6
Visco
Viscous
Wedge
Weight
Write
Yes