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Abstract: Errors  and  uncertainty  in  finite element  method  (FEM)-based  simulations  originate  from  numerous 

sources. In this paper, we will address the errors and uncertainties due to two sources, namely, the mesh 

density, and the mesh quality.  Our approach, using a super-parametric method, is to design a family of 

meshes of increasing degrees of freedom for a specific element type and a number of mean aspect ratios 

representing different mesh quality, and solve them in order to estimate the most probably accurate solution 

and its uncertainty of the FEM-based simulations.  To obtain an estimate of the “correct” solution at 

“almost” infinite degrees of freedom, we introduce a nonlinear least squares fit algorithm based on a 4-

parameter logistic distribution and apply to a sequence of at least five candidate solutions for a specific 

platform, element type, and mean aspect ratio. 

 
1. Introduction  

 

Errors and uncertainties in finite element method (FEM) based simulations are known to originate from at 
least eight sources: (1) The FEM computer code or “platform” using a specific numerical algorithm of 
approximation for solving a system of partial differential equations with initial and boundary conditions; 
(2) the choice and design of the FEM mesh using a specific grid spacing (or, mesh density), (3) same for a 
specific element type; (4) the “quality” measure of the FEM mesh such as the mean aspect ratio; (5) the 

uncertainties in the geometric parameters of a specific model; (6) the uncertainties in the physical and 
material property parameters of that model; (7) the uncertainties in the loading and constraint parameters, 
and finally (8) the uncertainty in the choice of the governing equations of that model. 
 
In this paper, we will address the errors and uncertainties due to two of the above-listed eight sources, 
namely, (2) the mesh density, and (4) the mesh quality.  Based on our earlier work [1, 2, 3], we use a 
super-parametric method to design a family of meshes of increasing degrees of freedom for a specific 

element type and a number of mean aspect ratios representing different mesh quality, and solve them in 
order to estimate the most probably accurate solution and its uncertainty of the FEM-based simulations.   
 
To obtain an estimate of the “correct” solution at “almost” infinite degrees of freedom, we introduce a 
nonlinear least squares fit algorithm based on a 4-parameter logistic distribution and apply to a sequence 
of at least five candidate solutions for a specific platform, element type, and mean aspect ratio.  The 
predicted “correct” solutions with uncertainties at one billion degrees of freedom are then compared 

with one another to yield a ranking of the solutions from the “most” to the “least” accurate, based on the 
“uncertainty metric.”   
 
To illustrate this new approach, we present two examples, of which the first one has known solutions: 
 

(*) Contribution of the U. S. National Institute of Standards & Technology.  Not subject to copyright. 
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(1) the first bending resonance frequency of a simple, isotropic, elastic cantilever beam, assuming a fixed 
platform and element type; (2) the elastic deformation of a pipe elbow with a circumferential surface 
crack at one of its two welds.  The significance and limitations of this new approach as a tool for 
verification and validation of the finite element method will be discussed. 

 
2. First Example – Cantilever Beam 

 

Our first example is a cantilever beam used to 
demonstrate, in detail, how the mesh is varied 
to produce 5 candidate solutions that are then 
fit to a 4-parameter logistic function.  The 
cantilever beam has a rectangular cross 

section and has a maximum tensile bending 
stress at the fixed end equal to 1500 MPa. We 
use an isotropic elastic material model. The 
length of the beam is such that simple beam 
theory applies. The ABAQUS finite element 
code is used to determine the fundamental 
frequency. The exact solution is 179.03kHz. 

Each mesh in the sequence has an increased 
number of Degrees Of Freedom (DOF) while 
the Mean Aspect Ratio (MAR) is held at a 
constant. In this detailed example, MAR is at 
6.63. We start with a mesh with 1535 DOF in 
Figure 1. ABAQUS determined the fundamental  
frequency to be 182.045 kHz. 

 
 

 
In Figures 2, the mesh density is increased to 
the maximum for this example with 36,543 
DOF. ABAQUS predicted a fundamental 
frequency of 181.077 kHz. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: 1535 DOF 

 

 
Figure 2: 36,543 DOF 
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Five versions of the mesh are used, each with a 
larger number of DOF then the previous. These 
five 2D data points (DOF vs. calculated 
Fundamental Frequency) are plotted on a 

logarithmic scale.  
 
Table 1 lists the DOF and corresponding 
predicted fundamental frequency (in kHz) for 
each mesh. 
 
                            Table 1 

1535 182.045 

4854 181.682 

11155 181.402 

21398 181.211 

36543 181.077 

  
Then a non-linear least squares calculation 
determines the four parameters in a logistic 
function which is then used to extrapolate to 
the point of convergence. The results of the 
ABAQUS hexa 8 test is shown in Figure 3. 
 

A variation of the mesh was produced with a 

MAR of 5.52 and 5 mesh densities were 
chosen with 1,833, 5,808, 13,359, 25,638, 
and 43,797 DOF, respectively. The same 
calculations were performed on these 5 
meshes using ABAQUS. The results are 
shown in Figure 4. As one might expect, the 
predicted fundamental frequency is slightly 

closer to the exact solution of 179.03. 
 
This experiment was repeated 5 more times using MAR of 4.14, 3,68, 3.31, 2.76, and 1.16. Figures 5-9 
show the results of these test. 
 
 

 
Figure 3: Four Parameter Logistic Fit 

 

 
Figure 4:  Logistic Function for MAR=5.52 

 

 
Figure 5: Logistic Function for MAR=4.14 

 

 
Figure 6: Logistic Function for MAR=3.68 
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Figure 10: 7 Nonlinear Fit of FEM Solution of First 

Resonance Frequency of a Cantilever Beam 

 

 
Figure 11: FEM Solution with Uncertainty for First    

Resonance Bending Frequency of a Cantilever Beam 

 

 
Figure 7: Logistic Function for MAR=3.31 

 

 
Figure 8: Logistic Function for MAR=2.76 

 

 
Figure 9: Logistic Function for MAR=1.16 
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3. Super-Parametric Mesh Generation 

 
This first example demonstrates a method to determine the accuracy of a FEM. It is also clear that the 
quality of the mesh plays an important role in the accuracy of the simulation. Of course, the errors 

involved in the simulation due to mesh quality are small, but this should be expected for such a simple 
problem. But one thing is certain. There were 35 different hexa meshes built for this experiment. In 
addition, each family of 5 meshes all had the same MAR and a monotonically increasing DOF. It is a 
chore to carefully build that many meshes. The only way that the method will be followed is if the meshes 
can be generated with ease. We used the super-parametric mesh generator called TrueGrid

® to generate 
all 35 meshes. After the first one was built, additional meshes only required the change of a single 
parameter and a rerun. TrueGrid

® is super-parametric because, with a single command change, it will 
generate a mesh for almost any popular FEM simulation code. With a single command change it will 

generate all linear tetra (4 nodes), linear hexa (8 nodes), quadratic tetra (10 nodes), quadratic hexa (20 
nodes), or triquadratic hexa (27 nodes).  
 
The method described here can be used to compare the accuracy of the same element type across multiple 
FEM simulation codes, as is done in the second example in this paper. Or it can be used to determine the 
accuracy by comparing the different element types within a single FEM simulation code. Or one can do as 
we did in this first example to compare the effect of the mesh quality on the solution. 

 
4. Second Example – Crack in a Pipe Elbow Weldment 

 

Figure 12 shows the results of a FEM simulation using Mpact. This mesh of a pipe elbow weldment with 
a vertical surface crack along the weld is formed from 27-node hexa elements (triquadratic). There are 
149,796 degrees of freedom. One end of the pipe is constrained with a force applied to the other end. This 
experiment is done 5 times, each time with a great number of DOFs then the previous time. As was done 
in the case with the cantilever beam, a logistic function is fitted to these 5 data points (see Figure 13). 
 

 
Figure 12: A Finite Element Solution for Stresses in a Cracked Pipe Elbow 
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Notice that the gap between the lower and upper asymptotes of this graph (3.5 MPa) is relatively small. 
This indicates that a model using the MPACT Hexa 27 (triquadratic 27 node brick) elements converges 
quickly as the mesh density increases. 
 
 
5. Pipe Elbow Weldment Mesh Generation 

 

There are a small number of parameters that define the model of the Elbow Pipe Weldment with a surface 
crack. They are declared using the para command found in the session file for TrueGrid

® as seen below: 
 
c      CONTROL MESH DENSITY 

para 

     d 10             c Mesh density - an integer greater than 1 

; 

 

c      DEFINE THE GEOMETRY 

para outtyp 4         c output type: 1 for ABAQUS, 2 for ANSYS,  

                      c 3 for LSDYNA, 4 for NASTRAN, 5 for MPACT 

     r1 300   c large outer radius of the elbow 

     r2 150   c outer cross section radius 

     th 25   c thickness 

     rlen 300   c length of straight pipe to the right 

     dlen 100   c length of straight pipe going down 

     wth  25  c width of the weld region (0 for no weld region) 

     gap 3              c initial gap 

; 

 

 

 

 
Figure 13: Nonlinear Least Squares Fit of 5 MPACT-Hexa-27 Solutions 
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c     SELECT OUTPUT PROPERTIES 

para outtyp 4           c output type: 1 for ABAQUS, 2 for ANSYS,  

                        c 3 for LSDYNA, 4 for NASTRAN, 5 for MPACT 

     elmtyp 3           c 1 for linear tets, 2 for quadratic tets,  

                        c 3 for linear hex, 4 for quadratic hex 

     youngs 3.0e+07     c Young's modulus 

     poissons .3        c Poisson's Ratio 

     massdens 2.2       c mass density 

; 

 

c     MESH PARAMETERS 

para  

     nqr [%d*3]         c number of elements in a quarter of a circle 

                        c around the pipe - odd number 

     wcpn [1+%nqr/3]    c width in number of nodes of the  

                        c coupon containing the gap - even number 

                        c exceeding wgap 

     wgap [%wcpn-2]     c width in number of nodes that form the gap 

                        c even number 

     nth 7              c number of elements in thickness of the pipe 

     hgap 1             c height in number of nodes that form the gap 

                        c smaller than nth 

     nrlen %nqr          c number of elements in the length of pipe to 

                        c the right 

     nelbow %nqr        c number of elements along the half elbow 

     ndlen [%nqr/3]     c number of elements in the length of pipe 

                        c going down 

     gang [90/%nqr]     c angle between radial mesh lines 

; 

 

The first parameter, d, is the density parameter. It is setup to be easy to use. When d is set to 3 (see 

Figures 14 and 15) we get the following coarse hexa 8 mesh which is similar to the mesh shown in Figure 
12.  
 
 

 
 

 
Figure 14:  Elbow Pipe Coarse Mesh 

 

 
Figure 15: Elbow Pipe Crack 

Coarse Mesh 
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If elmtyp is set to 1, we would get the 
mesh in Figure 16. The same nodes are 
used in this tetra mesh than what were 
used in the hexa 8 mesh in Figure 14. 

 
We use the same nodes because when 
making comparisons between different 
elements types, it is important not to 
introduce unnecessary variations in the 
two meshes. 
 
These are just some of the options 

available with a super-parametric mesh 
generator. One of the most important 
options is the variation in the mesh 
density without changing the topology 
of the mesh.  
 
In order to determine the effect of the mesh quality on the FEM solution, we will vary the Mean Aspect 

Ratio (MAR). We need to generate a family of meshes where the aspect ratio is monotonically 
decreasing. One way to do this is to increase the mesh density by changing the parameter d. We start with 
d=2. The resulting mesh is seen in Figures 17 and 18. There are two aspect ratios calculated. The first is 
aspect ratio of the elements nearest to the crack. The second aspect ratio is for the entire model. These 
meshes are designed so that the two MAR are always close. Table 2 shows all the MAR for the 11 
meshes. 
 

This method has the disadvantage that the MAR goes down as the mesh density goes up. An alternate 
method where the MAR goes down without a significant increase in mesh density will be demonstrated 
next. 
 
 

 
 
. 
 

 
Figure 16: Equivalent Tetra Mesh of Elbow Mesh 

 

 
Figure 17: Elbow Pipe d=1 

 

 
Figure 18: Crack d=1 
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                                                                         Table 2 

Density Number of Nodes Crack MAR Full MAR 

  2    5,976 10.19 11.67 

  3  11,838   6.81   7.88 

  4  19,593   5.11   5.96 

  5  29,310   4.09   4.79 

  6  40,926   3.14   4.01 

  7  54,442   2.92   3.44 

  8  69,902   2.55   3.02 

  9   87,277   2.27   2.69 

10 106,590   2.04   2.42 

11 127,789   1.86   2.20 

12 150,928   1.70   2.02 

 
 
 

We now show the other extreme with 150,928 nodes. We set d=12. The resulting mesh is shown in 
Figures 19 and 20. This last mesh was included so that the MAR did not exceed 2. We chose 2 because it 
is recommended for several FEM codes as the maximum aspect ratio. 
 
 

 

 
 
 

 
Figure 19: Elbow Pipe d=12 
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An alternative to increasing the mesh density while decreasing the MAR is to create a transition region 
between the dense mesh of the region containing the crack and the coarse mesh elsewhere. We show a 
progression of regions in the mesh for such a topology in Figures 21 through 24. 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
Figure 21: High Density 

Inner Region 

  
Figure 22: 1st Transition region 

Added 

 

 
Figure 23: 2nd Transition Region 

Added 

 

 
Figure 24: 3

rd
 Transition Added 

 

 
Figure 20: Crack d=12 
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Finally, we have the example of the elbow pipe mesh (Figure 25) with crack and transitions with mesh 
density doubled. As before, the mesh density can be increased everywhere by changing one parameter. 
Alternatively, additional layers of transitions can be added to only increase the mesh density in the area of 

interest, in this case the crack, without increasing the overall mesh density. It is not known what effect the 
transition regions will have of the accuracy of this problem. It is the goal of this project to establish the 
correct solution using the first set of meshes and then to determine the effect of the transitions topology 
on the accuracy of the FEM solution. 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

6. Conclusions 

 

With a super-parametric method, one can generate a family of FEM meshes. When the FEM results are fit 
to a 4-parameter logistic function, the error in the simulation can be accurately estimated. In particular, 
the example presented demonstrates the effect of mesh density and quality on the accuracy of the FEM 
simulation. 

 

Acknowledgments 

 

We wish to thank James J. Filliben, N. Alan Heckert, and Li Ma, all of the U.S. National Institute of 
Standards and Technology, for technical assistance during the course of this investigation. 
 
References 

 

[1]   P.V. Marcal, J.T. Fong, R. Rainberger and L. Ma, Finite Element Analysis of a Pipe Elbow 
Weldment Creep-Fracture Problem Using an Extremely Accurate 27-Node Tri-Quadratic Shell and Solid 

 
Figure 25: Crack in Elbow Pipe Doubled With Transitions 

 



14th International Conference on Fracture (ICF 14) 

June 18-23, 2017, Rhodes, Greece 

Element Formulation, Proc. 14th International Conf. on Pressure Vessels Technology, ICPVT-14, Sep. 23-
26, 2015, Shanghai, China, 2015, Procedia Engineering 130 (2015) 1110-1120. 
 
[2]   J.T. Fong, J.J. Filliben, N.A. Heckert, P.V. Marcal, R. Rainberger and L. Ma, Uncertainty 

Quantification and Extrapolation of Stresses in a Cracked Pipe Elbow Weldment Using a Logistic 
Function Fit, a Nonlinear Least Square Algorithm, and a Super Parametric Method, Proc. 14th 
International Conf. on Pressure Vessels Technology, ICPVT-14, Sep. 23-26, 2015, Shanghai, China, 2015, 
Procedia Engineering 130 (2015) 135-149. 
 
[3]   R. Rainsberger, J.T. Fong and P.V. Marcal, A Super-Parametric Approach To Estimating Accuracy 
and Uncertainty of the Finite Element Method, Proc. ASME Pressure Vessels and Piping Conf., 
PVP2016-63890, July 17-21, 2016, Vancouver B.C., British Columbia, Canada. 

 
 


