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ABSTRACT 

   The determinant of the Jacobian matrix is frequently used in 

the Finite Element Method as a measure of mesh quality.  

   A new metric is defined, called the Standard Error, based on 

the distribution of the determinants of the Jacobian matrices of 

all elements of a finite element mesh. Where the Jacobian 

norm can be used to compare the quality of one element to 

another of the same type, the Standard Error compares the 

mesh quality of different versions of a finite element model 

where each version uses a different element type.  

    To motivate this new Standard Error, we investigate the 

geometric meaning of the Jacobian norm on 3D Finite 

Elements. This mesh quality metric is applied to 8, 20, and 27 

node hexahedra, 6 and 15 node prisms, 4 and 10 node 

tetrahedra, 5 and 13 node pyramid, and 3, 4, 6, 8, and 9 node 

shell elements. The shape functions for these 14 element 

types, or more precisely their first partial derivatives, are used 

to construct the Jacobian Matrix. The matrix is normalized to 

compensate for size. The determinant of the Jacobian is 

calculated at Gaussian points within each element. Statistics 

are gathered to form the Standard Error of the mesh. 

   To illustrate the applicability of this a priori metric, we 

present two simple example problems having exact answers, 

and two industry-type problems, a pipe elbow with a crack and 

a magnetic resonance imaging (MRI) birdcage RF coil 

resonance, both having no analytical solution. 

 

_________ 

(*) Contribution of the National Institute of Standards & 

Technology. Not subject to copyright. 

 

   Significance and limitations of using this a priori metric to 

assess the accuracy of finite element simulations of different 

mesh designs are presented and discussed. 

 

1. INTRODUCTION 

   An essential component for verification and validation of 

computer simulations of high-consequence engineering 

systems is a parametric FEA pre-processor with the following 

requirements: 

 

(1) Element type: It must be able to choose the element 

type to be generated from 8, 20, and 27 node 

hexahedra, 6 and 15 node prisms, 4 and 10 node 

tetrahedra, 5 and 13 node pyramid, and 3, 4, 6, 8, and 

9 node shell elements. 

(2) Mesh Density: The mesh density can be changed 

locally or globally by changing a few parameters and 

preferably just one. 

(3) Model Parameters: Parameters and algebraic forms 

can be used to change geometry, mesh topology, 

boundary conditions, constraints, loads, and materials 

by changing the values of a few parameters. 

(4) Solution Platform: The model generated using this 

pre-processor can be translated to any of a set of 

Finite Element simulation codes including ABAQUS, 

ANSYS, COMSOL, LS-DYNA, MPACT, and 

NASTRAN. 

 

   The commercially available pre-processor called 

TrueGrid
®
, a super-parametric mesh generator [5][10], meets 
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these requirements and is used throughout this paper to 

generate various elements and to test their quality. 

   Numerous parametric FEA models have been generated to 

demonstrate numerical methods of verification and validation 

of the computer simulations. This is done by varying the mesh 

density, element type, and simulation platform. When things 

go well, there is an estimated asymptotic point of 

convergence. This is referred to a posteriori test of the 

simulation. 

   The goal of this paper is to determine if the mesh quality 

tests available in the pre-processor, referred to as a priori tests 

of the model, can predict the accuracy of the simulation. So a 

new quality test has been added to the pre-processor, called 

Standard Error, that produces a single number that can be used 

to compare all models of the same engineering system. The 

two important properties of this test are that it treats all 

element types equally and it is not influenced by mesh density.  

   This new test for quality is based on the Jacobian matrix. So 

the next section of this paper covers the fundamentals of the 

Jacobian matrix and its derivative. The shape functions for the 

various element types are included. The size of the element is 

factored out of the determinant of the Jacobian Matrix. The 

result is called the Jacobian Metric. 

   The next section has examples of elements and their 

Jabcobian measures. This is followed by the definition of the 

Standard Error, 4 examples, conclusions, references, and an 

appendix. 

 

2. Shape Functions and Determinants 

   This paper considers fourteen 3D elements: 8, 20, and 27 

node hexahedra, 6 and 15 node prisms, 4 and 10 node 

tetrahedra, 5 and 13 node pyramids, and 3, 4, 6, 8, and 9 node 

shells. This paper also considers their shape functions and 

their corresponding Jacobian determinants. All of these 

elements can be defined as a 3D function. The domain of this 

function is sometimes referred to as the space of three 

normalized parametric coordinates. We will use the parameter 

names α, β, and γ. The allowed values of these parameters will 

vary depending on the element type.  

   Each element is defined by a set of ordered nodes with 

coordinates               for i between 1 and m, where m is 

the number of nodes in the element. Associated with each 

node is a scalar shape function            . We define the 

function          that maps the domain of normalized 

coordinates to the element [1].  

 

            

 

 

           

 

Note that both f and pi are 3D vectors. In some cases, it will be 

more convenient to refer to the equivalent component 

functions that form the 3-tuple coordinates. 
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This will simplify the notation for the Jacobian matrix. Our 

first example is the 8 node hexahedral element (m=8) where 

all three parameters α, β, and γ are between -1 and 1 and with 

the shape functions: 

 

                     

                     

                     

                     

                     

                     

                     

                     

 

The first partial derivatives of the function          can be 

expressed as: 

  

  
         

   

  

 

 

           

 

  

  
         

   

  

 

 

           

 

  

  
         

   

  

 

 

           

 

All three partial derivatives above are 3D vectors which can 

be expanded to form the equivalent component derivatives. 

Each forms a column in the Jacobian matrix below [3]. 

 

        

        
  

 
 
 
 
 
 
 
  

  

  

  

  

  
  

  

  

  

  

  
  

  

  

  

  

   
 
 
 
 
 
 

 

 

Each of these nine partial derivatives in the matrix above can 

be expressed in terms of the partial derivatives of the shape 

functions. For example, 
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A full list of the partial derivatives of these shape functions 

can be found in the appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 1 represents the domain of the function f. The red 

lines are the edges of the cube which are not usually visible. 

The corner where they meet has the parametric coordinates (-

1,-1,-1). If you substitute these parametric values into the 8 

shape functions, you will get 1 for N1 and 0 for the others. It is 

this point in the domain that maps to the node at p1 in the 

figure below. It is left to the reader to establish the 

correspondence between the remaining corners in the domain 

and the nodes (corners) of the element in the figure below.   

   It is required that the first four nodes have a positive normal, 

using the right hand rule, that points toward the center of the 

element while the last four nodes have a positive normal that 

points away from the center of the element. There are 24 valid 

ways to order these nodes. The Jacobian matrix for each of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the 24 mappings may be different, but all the determinants of 

the Jacobians will be the same. 

   The 20 and 27 node hexahedral elements are similar in 

nature. The node numbering, the shape functions, and their 

partial derivatives can be found in the appendix.  

   When the mid-edge nodes of the quadratic elements are 

located at the mid-point of the line segment between 2 corner 

nodes, then the Jacobian Matrix is the same as the simpler first 

order elements. Examples of the Jacobian Metric applied to 

quadratic elements are omitted. 

   The 4 node tetrahedron is defined with parametric 

coordinates ranging from 0 to 1 with the added constraint that  

 

         

 

The four shape functions are: 

 

     

      

      

           

 

   The partial derivatives of these shape functions are trivial to 

calculate and lead to an unusual property of the tetra. The 

determinant of its Jacobian matrix is a constant throughout the 

element. It does not matter how many Gaussian quadrature 

points used to sample the Jacobian measure, they will all be 

the same. This is not the case with higher order tetrahedrons. 

   The figure below represents the domain of the function f for 

the tetrahedron. The figure below shows one node ordering. 

The positive normal, using the right hand rule, to the plane 

through the first 3 nodes must point towards the 4
th

 node. 

There are 12 valid ways to order the nodes in a tetrahedron. 

The determinant of the Jacobian matrix can be different for 

each nodal ordering. Below is one example of a nodal 

ordering. 

 

 

 

Fig. 1 Hexahedron Shape Function Domain 

Fig. 2 Hexahedron Nodal Order 
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   The quadratic version of the tetrahedron has additional 

nodes located midway along each edge producing a total of 10 

nodes. Full details on the 10 node tetrahedron are found in the 

appendix.  

 

3. Jacobian Metric: Factoring Out Volume 

   Our function f can be viewed as a mapping from one 3D 

space to another. The Jacobian matrix approximates f with a 

matrix. And the determinant of that matrix tells us the scale 

factor change in volume. When we measure the quality of an 

element, we are not interested in the effect that the size of the 

element has on the determinant. To remove the size factor 

from the determinant of the Jacobian, we determine the 

singular values of the Jacobian. If J is our Jacobian matrix, we 

use the factorization known as the Singular Value 

decomposition [2] 

        

 

where U and V are unitary matrices, and D is a diagonal 

matrix. The diagonal values of D are positive real numbers 

known as the singular values of J. If   is the middle singular 

value, we define the Jacobian metric to be: 

 

   

  
 

 

3. Examples of the Jacobian Measure 

   The ideal hex element is a cube which has a Jacobian 

measure of 1.0. The core of a proof of this statement would be 

to consider any volume in the domain which then maps to a 

similar volume within the element. The two volumes would be 

shown to be the same. 

   In the following examples, we start with a unit cube element 

and make a simple modification and apply the Jacobian 

metric.  

   In all cases, we use 5 Gaussian points to sample the Jacobian 

measurements. This means that, for the hexahedron element, 

we sample the element at 125 points and report the most 

extreme value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Starting with a cube element, select any or all of the nodes 

of a face and move them orthogonal to that face. All edges 

stretched by a factor of 2 have a Jacobian measure 2. The 

measure in the element above is not quite 2 because the 

Gaussian points used to sample the interior of the element are 

a small distance from the edge. If we measured along the edge 

we would see a measure of 2. Alternatively, if we stretch all 

four edges uniformly, we would see that the measure is 

exactly 2 throughout the interior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Stretch: Jacobian Measure of 1.953 

 

Fig. 6 Shear: Jacobian Measure 
of 1.0 

Fig. 3 Tetrahedron Shape Function Domain 

Fig. 4 Tetrahedron Nodal Numbering 



  

 
 

   This example is a parallelepiped. The volume does not 

change under this mapping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   It is remarkable how insensitive the measure is to a 90 

degree twist. Consider how the volume of a region from the 

domain to the element changes when the element has a twist. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   This example shows how sensitive the Jacobian Metric is to 

aspect ratio. If we could measure closer to the boundary, we 

would see an even higher measure of distortion.  

   Related to this is the pyramid element. There is no unique 

way to handle pyramids. For example, it can be treated as a 

hexahedron with a degenerate face or as two tetrahedrons 

sharing a face. In the latter linear case, the shape of the base 

will probably match the face of an adjoining hexahedron, but 

only if the base is planar. Any movement in the simulation 

may cause the base to become non-planar, creating either gaps 

or overlaps between the two tetrahedrons and the adjoining 

hexahedron. Added to this problem is when quadratic (10 

node tetrahedron and 20 node hexahedron) elements are 

employed. This will cause an additional node at the center of 

the base on the tetrahedron side that will not be matched by 

the adjoining quadratic hexahedron. If a tri-quadratic (27 node 

hexahedron) element adjoins the base of two quadratic (10 

node) tetrahedrons, the discontinuity in the mesh will resemble 

the linear case. This is why the Jacobian measure in this paper 

treats the pyramid as a degenerate hexahedron. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   In this last hexahedron example, we start out with a unit 

cube and make one simple modification. In this case, one node 

is moved along the line from the original position to the center 

of the cube. When the node is moved 73.4% of the way to the 

center, the element ceases to be convex and the Jacobian 

measure turns negative. 

   More generally, when the Jacobian measure is both positive 

and negative within an element, there will be a surface within 

the element where the Jacobian is zero. This is where the 

element volume folds onto itself. A better way to say this 

might be that if the Jacobian measure is both positive and 

negative within an element, there are at least two different 

points in the domain that map to the same point within the 

element. 

   We now turn our attention to some common distortions of a 

tetrahedron and how the Jacobian measure is affected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   The above tetrahedron is ideal because it is similar to the 

shape of the domain. One of the nodes is met by edges that are 

90 degrees to each other. These same edges must have the 

 

Fig. 7 Twist: Jacobian Measure of 1.414 

 

Fig. 8 Shrink: Jacobian Measure 7.031 

 

Fig. 9 Jacobian Measure of -.000126 

 

Fig 10 Ideal: Jacobian Measure 1.0 



  

 
 

same lengths. In other words, the three triangles that meet at 

this node are identical right triangles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    What is remarkable about the tetrahedron in the above is 

that it has all 6 edges the same length (i.e. an aspect ratio of 

1.0) and yet it has a relatively large Jacobian measure of 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   What is even more remarkable is if we stretch one of the 

edges of the equilateral tetrahedron by doubling the edge 

length, the distortion in the element is almost imperceptible. 

This is because one of the nodes has some angles approaching 

90 degrees, resembling the shape of the domain. 

   The next two tetrahedron examples are due to a simple 

distortion of the ideal tetrahedron, as described above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 13 is an example of a measure less than 1. This is 

because the four nodes are getting closer to being co-planer. 

 

 

 

 

 

 

 

 

 

 

   Figure 14 is another example of the four nodes being nearly 

co-planar. The next two examples, found in some tetrahedral 

meshes, have extreme distortions and should be avoided. 

 

 

 

 

 

 

 

 

 

 

 

 

 

    The element in Figure 15 is sometimes found in a mesh near 

the boundary. It is another example of the four nodes being 

nearly co-planer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Equal: Jacobian Measure of 2 

 

Fig. 14 Short Edge: Jacobian Measure of .2 

 

Fig. 12 Stretch: Jacobian Measure 1.05 

 

Fig. 13 Shear: Jacobian Measure .707 

 

Fig. 15 Sliver: Jacobian Measure of .048 

 

Fig. 16 Fuzzy: Jacobian Measure of ??? 



  

 
 

   The example in Figure 15 was included because it is difficult 

to test. This is due to the limitations of a digital computer. The 

absolute value of the measure will be small and it is almost 

random whether the measure will be positive or negative. 

 

4. Definition of the Standard Error Metric 

    We now define the Standard Error for the purpose of 

comparing the mesh quality of different versions of a finite 

element model where each version uses a different element 

type. This is based on the Jacobian Metric.  

   Thus far we have seen examples of the Jacobian metric for 

the interior of a single element. We now consider the Jacobian 

metric at each node of an element for all of the elements in a 

model. 

   For each node in the model, we get the Jacobian measure at 

that node for every element that contains the node. We define 

the Standard Error for that node to be the average of these 

Jacobian measurements. The Standard Error for the model will 

be the mean and standard deviation of the distribution of the 

average Jacobian measures for all the nodes in the model. 

   The Standard Error Metric produces a pair of numbers for 

every model, regardless the element type and mesh density. 

 

5. Two Simple Examples 

    The first two examples are included due to their simplicity 

[9]. The hexahedron mesh is uniform except for a modest 

geometric progression in the mesh density along a cantilever 

beam. The tetrahedron mesh is derived from the hexahedron 

mesh by subdividing each hexahedron into 5 tetrahedron 

elements. At the lowest mesh density, the standard error 

measures an almost ideal and as the mesh density is increased, 

the standard error metric for the mesh hardly changes. This is 

the case for all of the element types. 

    Figure 17 shows the results for the resonance frequency 

calculation for a cantilever beam. Figure 18 shows the results 

for maximum stress of a cantilever beam. In this case, since 

the element quality is high in all cases, any inaccuracies in the 

calculations are not a function of the mesh quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. An Example of a Pipe Elbow With a Crack 

    There was a surprise in this example, modeling a crack in a 

straight pipe using ABAQUS [11]. Mesh-1 (see Figure ) has 

low mesh density, with three element types: 4 node 

tetrahedron, 8 node hexahedron, and 20 node hexahedron. 

Mesh-2 has high mesh density with the same 3 element types. 

One of the key features in both meshes is a transition in mesh 

density approaching the crack. The elements in the transition 

region usually have the lowest quality. Standard error 

indicated that the Mesh-1 with the 4 node tetrahedron mesh 

would fail. But the standard error did not distinguish between 

the 8 node and the 20 node hexahedrons using both Mesh-1 

and Mesh-2. The mesh density, as in this case, may have no 

effect on the standard error. It is not clear why the 20 node 

hexahedron did so badly in both meshes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. An Example From Magnetic Resonance Imaging 

    In this next example, the MRI birdcage coil resonance is 

calculated using COSOL [6]. In Figure 20 two element 

arrangements were used for comparison. Mesh-1 consists of 

quadratic tetrahedrons. Mesh-2 consists of a mixture of tri-

 
 

 

Fig. 17 Cantilever Beam Resonance 

Fig. 18 Cantilever Beam Max Stess 

Fig. 19 Cracked Pipe Calculations 



  

 
 

quadratic hexahedron, quadratic pyramid, and quadratic 

tetrahedron elements. Mesh-1 proved to be more accurate. 

This was done by analyzing 7 versions of each mesh 

arrangement by increasing the mesh density. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1 shows the numeric results of these calculations for 

Mesh-1. Table 2 shows the standard error metric (both mean 

and standard deviation) for these 7 meshes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 M102 M103 M104 M105 M106 M107 M107 

Mean .9940 1.000 .9841 1.001 1.034 1.089 1.089 

S.D. .4427 .4597 .4625 .477 .5005 .5669 .6015 

 

 
 
8. Conclusions 

   An unexpected result from this study is that a tetrahedral 

element, with aspect ratio of 1, is far from the ideal 

tetrahedron. In fact, the best tetrahedral element comes from 

the corner region of a quadratic hexahedral element. The MRI 

example using quadratic tetrahedron demonstrates high quality 

elements with the mean hovering around 1. The fact that this 

series of calculations resulted in the highest level of accuracy 

supports the use of the Standard Error to aid in the a priori test 

for accuracy. 

   The Standard Error Metric is based entirely on geometry and 

is independent of the analysis platform. Except for some 

simple examples, it is not possible that the Standard Error 

Metric can be used solely to predict the accuracy of a 

simulation. It does not incorporate the need for a higher 

quality mesh locally due to the effect of boundary conditions, 

constraints, and loads. It also does not include the behavior of 

the materials and any possible non-linearity.  

   As was pointed out, the Standard Error is insensitive to mesh 

density. It was also pointed out that the quadratic form of an 

element type produces the identical Standard Error as the 

linear version of the element (only in the initial state when the 

mid-nodes are located at the mid-points of the edges of the 

quadratic element). In most cases, as the mesh density is 

increased or when the element type is changed from linear to 

quadratic, the solution offered by the simulation is more 

accurate. 

   This is compelling evidence that no a piori metric of the 

mesh can predict the accuracy of a simulation without taking 

into consideration all of these properties of a simulation. 

   Methods to show accuracy of a simulation that are of the a 

posteriori type have more information about the simulation. 

Multiple runs with increasing mesh density have a good 

chance of showing convergence. But such methods have a 

serious weakness. When a sequence of improved meshes fails 

to converge, the a posteriori methods cannot offer a remedy. 

   Both the a posteriori methods and the Standard Error are 

global in nature. This is not sufficient. For example, the 

Standard Error is insensitive to a sheared mesh or mesh 

density. It also is unaffected by irregular nodes [7] or rapid 

change in mesh density, both which can affect the simulation 

of shocks and fluid flow, in particular. It is possible that a 

small region of the mesh is of poor quality, but it has little 

effect on the Standard Error and a huge negative effect on the 

simulation. Only local mesh quality tests can detect these 

problems in the mesh. 

   The Standard Error Metric would be more useful in 

predicting the accuracy of a simulation if the average measure 

was weighted locally and automatically, based on the 

importance of each region of the mesh to the accuracy of the 

simulation. 
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9. Appendix – Finite Element Node Numbering, Shape Functions, and Their Derivatives 
 

Linear 8 Node Hexahedron 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quadratic 20 Node Hexahedron 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

  
               

   

  
                

   

  
                 

   

  
               

   

  
               

   

  
                 

   

  
                  

   

  
               

 

 

   

  
               

   

  
                 

   

  
                 

   

  
               

   

  
               

   

  
                  

   

  
                  

   

  
               

 

 

   

  
               

   

  
                

   

  
                

   

  
               

   

  
                

   

  
                 

   

  
                 

   

  
                 

 

                     

                     

                     

                     

                     

                     

                     

                     

 

                                  

                                  

                                  

                                  

                                  

                                  

                                  

                                  

                         

                        

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                   

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

            
   

               



  

 
 

  

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

 

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                               

   

  
                                              

   

  
                                               

   

  
                   

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

 

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

    

  
                  

    

  
                  

    

  
                  

    

  
                  

    

  
                  

 



  

 
 

Tri-quadratic 27 Node Hexahedron 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             

                            

                             

                             

                             

                             

                             

                             

                             

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                              

                            

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                      

    

  
                           

    

  
                      

    

  
                           

    

  
                      

    

  
                           

    

  
                      

    

  
                           

    

  
                           

    

  
                           

    

  
                           

    

  
                          

    

  
                           

    

  
                           

    

  
                    

    

  
                    

    

  
                    

    

  
                    

    

  
                      

 
The blue node numbers are mid-face nodes 
indicated by a cross. Node 27 (not shown) is 

located at the center of the element. 

              



  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

    

  
                      

    

  
                           

    

  
                      

    

  
                           

    

  
                      

    

  
                           

    

  
                      

    

  
                           

    

  
                           

    

  
                           

    

  
                           

    

  
                    

    

  
                    

    

  
                           

    

  
                           

    

  
                    

    

  
                    

    

  
                      

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

   

  
                           

    

  
                           

    

  
                           

    

  
                           

    

  
                           

    

  
                           

    

  
                           

    

  
                           

    

  
                      

    

  
                      

    

  
                      

    

  
                      

    

  
                    

    

  
                    

    

  
                    

    

  
                    

    

  
                           

    

  
                           

    

  
                      



  

 
 

Linear 6 Node Wedge 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quadratic 15 Node Wedge 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

             

                   

             

             

                   

   

  
      

   

  
      

   

  
            

   

  
     

   

  
     

   

  
           

   

  
         

   

  
   

   

  
          

   

  
         

   

  
   

   

  
          

   

  
   

   

  
         

   

  
         

   

  
   

   

  
         

   

  
          

                       

                       

                               

                       

                       

                                 

               

                     

                     

              

              

                    

                

                      

                      

   

  
                  

   

  
                  

   

  
                           

   

  
                 

   

  
                 

   

  
                           

   

  
        

   

  
              

   

  
              

    

  
        

    

  
        

    

  
              

    

  
       

    

  
             

    

  
             

             

      

        

 

        

            

      



  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linear 4 Node Tetrahedron 

 

 

 

 

 

 

 

 

 

Quadratic 10 Node Tetrahedron 

 

 

 

 

 

 

   

  
                   

   

  
   

   

  
                        

   

  
                   

   

  
   

   

  
                        

   

  
           

   

  
            

   

  
                   

    

  
       

    

  
   

    

  
       

    

  
           

    

  
            

    

  
                   

   

  
   

   

  
                   

   

  
                        

   

  
   

   

  
                   

   

  
                        

   

  
           

   

  
                   

   

  
            

    

  
   

    

  
       

    

  
       

    

  
           

    

  
                   

    

  
            

     

     

     

           

   

  
   

   

  
   

   

  
   

   

  
    

 

   

  
   

   

  
   

   

  
   

   

  
    

 

   

  
   

   

  
   

   

  
   

   

  
    

 

             

             

                             

             

         

                 

                 

         

         

                  

   

  
   

   

  
   

   

  
             

   

  
       

   

  
   

   

  
      

   

  
      

   

  
     

   

  
     

    

  
               

   

  
       

   

  
   

   

  
             

   

  
   

   

  
     

   

  
      

   

  
               

   

  
     

   

  
   

    

  
      

   

  
   

   

  
       

   

  
             

   

  
   

   

  
     

   

  
               

   

  
      

   

  
   

   

  
     

    

  
      

 

          

        


