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Abstract 

We describe simulations of solid rocket motors that 
involve coupling between the core fluid flow, the 
structural response of the propellant and case, and the 
combustion of the propellant. A partitioned predictor-
corrector algorithm is employed to treat the fluid-
structure interaction. The combustion rate of the 
propellant is coupled to the fluid flow via an empirical 
power law relationship. Our algorithm couples the 
physical processes involved using a partitioned 
approach, enabling us to use existing codes to perform 
the bulk of our simulations. We give special 
consideration to the jump conditions that hold at the 
fluid-structure-combustion interface, and specialize them 
for the early burn phase. The interface between the 
eroding solid and the fluid is treated using an ALE 
formulation, which provides a consistent technique for 
handling the eroding solid. Data are presented that 
demonstrate the parallel performance of our code on a 
variety of architectures. Results from simulations of the 
space shuttle solid rocket motor demonstrate the 
applicability of our approach. Future extensions of the 
simulation capability to include thermal effects, 
turbulence and material failure will be discussed. 

1. Introduction 

Simulation of solid rocket motors presents challenges 
in many areas. A complete simulation requires 
consideration of different physics (e.g., fluid flow, 
structural deformation, fuel combustion, etc.), careful 
treatment of the interface between these zones and 
efficient parallel numerical algorithms. In this paper, we 
outline a preliminary implementation of a parallel code 
that couples the structural deformations experienced by 
the rocket fuel and casing with the fluid flow in the core 
of the rocket. 

A code that will perform coupled multi-physics 
simulations can be designed using either a monolithic or 
a partitioned strategy. The monolithic approach requires 
that a single new code be developed by the various 
researchers who work in the different physics groups. 

Global iterations are performed that simultaneously 
update all of the variables in the different physics zones. 
The interface conditions are enforced as part of the 
global iterations. In contrast, the partitioned approach 
uses existing application codes that may have been 
developed by the different groups independently of any 
integration effort. Interface conditions are enforced by 
iteration between these different physics modules. Thus, 
the partitioned approach provides a relatively 
straightforward path for integration of the physics 
demanded by a complete simulation of a solid rocket 
motor. 

The paper is constructed as follows. We first describe 
the three component codes: ROCFLO, ROCSOLID and 
ROCFACE. We then discuss the implementation and 
parallel performance of a partitioned algorithm that 
requires iteration to self-consistency between 
ROCSOLID and ROCFACE. We end the paper with a 
brief description of a large-scale demonstration 
simulation of the space shuttle solid rocket motor. 

2. ROCFLO - The Fluids Solver 

ROCFLO is a CFD code developed to simulate solid 
rocket booster core flow dynamics. Rocket flow 
problems exhibit singular features compared to other 
flow environments, primarily the fast propagating 
acoustic pulses in the chamber that could potentially 
cause instabilities and lead to rocket malfunction. 

A three dimensional, structured, finite volume cell-
centered approach is adopted. In this framework 
complex geometries are handled through a multiblock 
approach. The multiblock approach also lends itself to 
parallel computing. The Navier-Stokes equations are 
solved on dynamic meshes whose boundaries adapt to 
conform to the propellant surface that deforms due to the 
loads imposed on it. Some details of the code are 
presented in this section; for further details consult [1]. 

2.1 Governing Equations 

The unsteady, three dimensional, compressible 
Navier-Stokes equations on dynamic meshes may be 
expressed as  

 . .
t

∂ +∇ = ∇ +∂
U

F V S  (1) 

where U  is the set of conserved quantities, F  is the 
convective flux vector, V  are the viscous fluxes and S  
are the source terms, i.e, 
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Here, , , , ,iu p Eρ g  are the density, velocity 
components, pressure, energy and grid speeds, 
respectively. The equations  

 ( )2 2 2
1 2 31 2

p
E u u u

ρ
ρ

γ
= + + +−  (3) 

and 

 p RTρ=  (4) 

complete the system. The stress tensor ijτ  and heat 

flux iq  are given by 
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and 

 i
i

T
q

x
η

∂= ∂ . (6) 

2.2 Numerical Method of Solution 

The above set of differential laws, governing the fluid 
motion of a calorically perfect gas, may be written in the 
integral form 

 ( ).dV U dA dV
t

∂ + − − =∂ ∫ ∫ ∫U F V g n W .

 (7) 

Over a computational cell (control volume) the semi-
discrete form of the previous equations becomes  

 ( ) ( ).
faces

d
U U A W

dt
Ω ∆ Ω+ − =∑ g nF  (8) 

where F  is the numerical flux function, Ω  is the cell 
volume and A∆  are its surface areas. The correction to 
the fluxes due to mesh movement is .U A∆g n . In the 

coupled rocket simulations, the grid speeds arise due to 
the boundary deformations induced by the fluid loads 

and as computed by the structures code. For dynamic 
mesh computations the geometric conservation law is 
another constraint that is satisfied in the computations. 

The spatial discretization schemes implemented in 
ROCFLO are the central scheme with artificial 
dissipation [5] and two second order TVD schemes: 
Roe's flux difference splitting scheme [11] and Yee's 
symmetric TVD scheme [12]. A number of limiters, i.e., 
minmod, van Leer, van Albada and Superbee, have also 
been implemented. Yee's symmetric TVD scheme, along 
with one of the more diffusive limiters such as minmod, 
have been shown in the literature to perform very well in 
rocket chamber type simulations. Consequently this 
scheme is generally utilized in computations. 

The flow equations are marched in time using an 
explicit multistage Runge-Kutta method. For the 
unsteady computations of the integrated rocket code, a 
two stage method is used as well as global time stepping, 
where the marching step size is limited by the smallest 
time step of all the cells in the computational domain. 

2.3 Parallel Code Performance 

ROCFLO is implemented in Fortran90. Fortran90 
offers many features useful for parallel programming 
over FORTRAN77. Primary of these are the user defined 
data types. A computational block may be defined as an 
object and contains all data relevant to that block (node 
coordinates, face normals, volumes, solutions, 
parameters, etc.). This object model facilitates placement 
and migration of computational blocks on processors. 
The code was initially optimized for scalar performance 
both with respect to minimization of operations and also 
cache utilization. The scalar performance of the code is 
summarized in Table 1. The code executes at about 80 
Mflops on a single processor of a Origin2000. 

Scheme

central scheme

central + moving grids

2nd upwind scheme

2nd upwind + moving grids

s/node/RK - stg

7

12

10

15
 

Table 1: Scalar performance of ROCFLO. 

The parallel scalability of ROCFLO on several 
architectures is depicted in Figure 1. The test problem is 
scaled such that as the number of processors is increased, 
the total work load for each processor is constant. The 
code scales very well on both of the machines. Further 
refinements are in progress. 



3 
American Institute of Aeronautics and Astronautics 

 

Figure 1: ROCFLO parallel scalability. 

3. ROCSOLID - The Structures Solver 

ROCSOLID, the structural analysis code used in the 
coupled simulations, employs a finite element 
discretization of the problem domain using unstructured 
meshes. Dynamic problems are solved using the implicit 
Newmark time integrator [2]. The linear matrix 
equations encountered within the Newton iterations at 
each time step are solved using a scalable parallel 
multigrid solver [8]. The code is written in Fortran90, 
and uses MPI to perform interprocessor 
communications. 

Kp

nonblocking MPI

 

Figure 2: Communications during Kp calculations. 

Examination of the multigrid algorithm demonstrates 
that all of the operations can be performed independently 
on partitioned domains [10]. In particular, the main 
components of the algorithm are matrix-vector 
multiplications that can be efficiently implemented 
element-by-element. Interprocessor communications are 
only required during the matrix-vector multiplications, 
scalar products and fine-to-coarse mesh restriction. 
Matrix free element computations reduce the storage and 
the time requirements of our implementation; for 

example, the product Kp , where K  is a stiffness matrix 

and p  is the search direction in conjugate gradient 
iteration, can be written as 

 
e

e e T e

e e

dV
   = =     

∑ ∑ ∫Kp K p B DB p

R

. (9) 

Computations can then proceed from right to left. 
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Figure 3: ROCSOLID parallel performance. 

Figure 2 shows the communications required by our 
distributed memory implementation of the matrix-vector 
products. The mesh is partitioned into a number of 
domains with equal numbers of elements. The product 
Kp  is formed locally on each processor using the 
approach outlined in Equation (9); interprocessor 
communications are then performed using nonblocking 
MPI communications as shown in Figure 2. 

Multigrid methods require a hierarchy of increasingly 
finer meshes. We use Truegrid to produce a sequence of 
nested, uniformly refined hexahedral meshes, which 
allows us to model complex parts. Mesh partitioning is 
performed on the coarsest mesh using Metis to achieve 
perfect load balance between the processors. Uniform 
refinement of the coarsest mesh partitions produces the 
required partitions on all of the fine meshes. Thus, 
perfect element load balance is maintained through the 
mesh hierarchy, although the resulting communication 
pattern may not be optimum. 

Figures 3 and 4 show data that measure the parallel 
performance of ROCSOLID. Both sets of data were 
obtained by solving a series of scaled problems on three 
different parallel computers: a 512 processor Cray T3E, 
a 128 processor Origin 2000 and a 64 processor IBM 
SP2. The scaled problems were constructed so that the 
amount of work for each processor (as measured by the 
number of elements assigned to each processor) 
remained constant. Figure 3 shows the measured 
performance on each of the machines. Although the 
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observed Mflop rates are below the maximum quoted for 
the different machines, the observed values are 
reasonable for an unstructured mesh solver. The scaled 
speed-ups shown in Figure 4 indicate the excellent 
parallel performance of ROCSOLID. In particular, the 
code runs extremely well on the Cray T3E. The poorer 
performance on the Origin is probably attributable to 
system processes invading the dedication partition used 
to collect these data. 
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Figure 4: ROCSOLID scaled speed-ups. 

4. ROCFACE - The Interface Code 

The interface code handles mesh association and data 
transfer between the fluid and solid meshes across 
multiple processors. The mesh association algorithm is 
used to determine the geometric relationship between the 
two non-matching meshes by locating the closest solid 
element for each fluid nodal point on the interface. Our 
algorithm traverses the fluid nodes and solid elements 
from neighbor to neighbor so that the closest elements 
can be located quickly [6]. We perform mesh association 
at every time step to track the moving interface. Since 
the geometric relationship changes rather slowly 
between the two meshes, from the second time step we 
search for the closest element of a fluid node starting 
from its closest element in the previous time step to 
speed up the search. 

The result of the mesh association is then used for 
motion and load transfer between the fluid and solid 
meshes. It is essential to ensure conservation during data 
transfer; we are currently using the methods in [4]. 
Specifically, we transfer displacements and velocities 
from solids to fluids by interpolating the values for each 
fluid nodal point at its closest point on the solid mesh. 
For load transfer, the nodal forces for each solid node is 
evaluated as a weighed sum of the fluid nodal forces. 
The method uses the same set of coefficients for both 
load and motion transfer, and as a consequence, 
guarantees global conservation of energy [4]. 

Since the fluid and solid meshes are distributed across 
multiple processors, the interface code must handle 
distributed meshes. In our parallel implementation, we 
first compute the bounding boxes of the partitions of the 
solid mesh and of the blocks of the fluid mesh. These 
bounding boxes are compared to provide a quick 
estimate of the geometric relationship between the solid 
partitions and the fluid blocks. Then the solid partitions 
adjacent to a fluid block are shipped to the processor that 
owns the fluid block, and are connected together to form 
a new mesh. The sequential mesh association algorithm 
is then applied on each processor in parallel. As the by-
product of mesh association, a more accurate 
communication pattern is obtained which is used to 
communicate the physical quantities between processors 
to perform data transfer. The interface code is 
implemented in C++ using object-oriented techniques, 
employing the CGAL library (www.cs.uu.nl/CGAL) for 
the geometric primitives and the half-edge data structure 
for unstructured meshes. 

5. GEN1 - A Multiphysics Code for Rocket 
Simulations 

The three component codes described above form the 
basis of our rocket motor simulation tool. The key to 
successfully solving our coupled problem is to capture 
the interface physics correctly. Figure 5 shows the 
combustion interface between the solid and fluid 
domains; the interface moves with velocity r& , and has 
an outward unit normal n  measured positive into the 
solid domain. Consideration of conservation of mass and 
linear momentum requires that 

 ( ) ( ). . . .s s f f mρ ρ− = − =r n v n r n v n& &  (10) 

and 

 ( ) ( )( ) ( )
f s s fm − + − =n nv v t t 0  (11) 

respectively. Subscripts f  and s  denote the fluid and 

solid regions, respectively, ρ  denotes density, m  

denotes the mass transfer into the fluid, v  denotes 

fluid

solid  

Figure 5: Interface geometry. 
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velocity and ( )nt  denotes tractions measured with 
respect to n . In order to model solid rockets, we make 
some simplifying assumptions regarding the motion of 
the fluid-solid interface. 

5.1 Stationary Interface 

We first consider a stationary interface, where the 
interface is constrained to move with the solid, i.e., the 
interface regression rate, r& , is equal to the solid 
velocity, sv . This assumption allows us to model the 
initial burn of the motor (e.g., 1t <  sec), during which 
the regression of the interface through the solid is small. 
In order to model the effect of the mass transfer from the 
propellant to the core flow, we allow the interface to 
transfer mass at a rate per unit area m , where 

 n
s fm apρ= , (12) 

which is a standard combustion law. Consideration of 
the balance of mass and linear momentum produces 

 . .f s

f

m

ρ
= − +v n v n  (13) 

and 

 s f fp m= −t n v , (14) 

respectively. 

5.2 Moving Interface 

In a simulation of the full rocket burn, we must 
consider a moving interface. Here, the interface will 
move through the solid according to the chosen 
combustion law. Following the standard combustion law 
used for the stationary interface, we have 

 ( ). n
s fap− =r v n& . (15) 

The no-slip fluid boundary condition requires that 

 ( ).t
f s s= −v v v n n  (16) 

and balance of mass and linear momentum require 

 ( ). .
n

ns
f s

f

ap
ap

ρ
ρ

= − + +v n v n  (17) 

and 

 ( )( ) ( ) n
s f s f s fapρ− = − + −n nt t v v , (18) 

respectively. 

5.3 Predictor-Corrector Coupling Algorithms 

The interface conditions presented above are enforced 
using predictor-corrector cycles that iterate between the 
fluid and solid discretizations until self-consistency is  

1nt

nt

ft st

1 1,n nt t
f fp + +v 1 1,n nt t

s s
+ +d v

1 1,n nt t
f f

+ +d v1nt
s

+t

nt

 

Figure 6: Stationary interface predictor-corrector 
algorithm. 

obtained within a global time step. The algorithms 
follow methods described in the aeroelasticity literature 
[3,7], and are outlined in Figures 6 and 7 for the 
stationary and moving interfaces, respectively. To 
advance the solution from time nt  to 1nt +  by advancing 

over a global time step nt∆ , we first advance the fluid 
solution a number of explicit time steps (e.g., 10). This 
produces estimates of the fluid interface pressure and 

velocity at time 1nt + , 1nt
fp + , 1nt

f
+v , respectively. Using 

Equations (6) and (10), the tractions acting on the solid 

at the interface, 1nt
s

+t , are computed. These tractions are 
used as applied loads over an implicit solid time step 
( s nt t∆ ∆= ). For coupling purposes, in the case of the 
stationary interface the solids calculation produces 
estimates of the interface position and velocity at 1nt + ,  

1nt

nt

ft st
nt

1nt
f

+
v

1

,
nt

s
+

r t

1nt
s

+
v

1 1

, ,
n nt t
f f

+ +
r t v

 

Figure 7: Moving interface predictor-corrector 
algorithm. 
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1nt
s

+d  and 1nt
s

+v ; in the case of the regressing interface, the 
solid calculation generates the solid velocity at the 

interface 1nt
s

+v . Using Equations (5) and (9), these 
quantities provide the fluid boundary conditions that can 
be used to drive the explicit fluids simulation, if 
necessary. In the case of the stationary interface they 
also prescribe the motion of the moving boundary for the 
fluid calculation; otherwise Equation (7) is used. 

The procedures shown in Figures 6 and 7 are repeated 
until the interface quantities have converged. We 
examine the relative change of the nodal velocities, 
displacements and forces on the solids side of the 
interface. When these quantities are small, we assume 
that the interface has converged. The algorithms used in 
ROCFACE ensure that conservative operators are used 
to transfer quantities across the fluids-solids interface. 
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Figure 8: GEN1 scaled speed-up. 

6. GEN1 Parallel Performance 

We have already demonstrated the scalable parallel 
performance of the primary GEN1 components codes 
ROCFLO and ROCSOLID. The partitioned approach 
adopted for the coupling algorithms preserves this 
perfomance for GEN1. This is demonstrated in Figure 8, 
which shows the scaled speed-up of the coupled code 
measured on a 128 processor Origin 2000. Good 
scalability is observed, although a reduction in 
performance is observed when all 128 processors are 
used. 

Figure 9 shows the individual time requirements of 
ROCSOLID, ROCFLO and ROCFACE measured during 
the scaled speed-up runs. Clearly, the time spent in 
transferring data across the interface is small compared 
to the computation time in the two physics codes. With 
our current strategy, twice as much time is spent in 
ROCSOLID than in ROCLFO. However, this is partly 
due to the use of single precision arithmetic in ROCFLO 
and double precision arithmetic in ROCSOLID. Current 
research is being directed at investigating the trade-offs  
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Figure 9: GEN1 division of labor on the Origin 2000. 

between the time steps used in the solid and fluid 
simulations, accuracy and stability of the coupling 
algorithms and computational cost. 

6. Space Shuttle Solid Rocket Motor Simulations 

Our code is continuing to be developed to simulate a 
variety of solid rocket events. As a demonstration of our 
capabilities, we recently used a 256 processor 
Origin2000 in dedicated mode to simulate the first 0.1 
secs of the firing of the space shuttle’s solid rocket 
booster. ROCFLO used a discretization of 4,000,000 
cells and ROCSOLID used a mesh of 270,000 elements 
(the fluid cells were typically ten times smaller in linear 
dimension that the solid elements). The fluids time step 
was 610−  secs., resulting in a global and solids time step 
of 510−  secs. Further details and visualizations produced 
from this simulation are available at www.csar.uiuc.edu. 

Currently, our coupled simulation capability is focused 
on relatively simple models of the various physical 
effects in the rocket. In the future, we will augment our 
basic models to include features such as thermal effects 
in the propellant and case, turbulence on the core flow 
and material failure in the grain. Our choice of a 
partitioned coupling strategy makes these formidable 
tasks possible: experts in these different fields are able to 
implement their models within the basic framework 
outlined in this paper, using predictor-corrector iterations 
to resolve conditions at the combustion interface. 
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