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Abstract 
The purpose of this study is to demonstrate a 
methodology for springback compensation in sheet 
metal stamping operations. An optimization method 
based on the D-optimality criterion for experimental 
design and successive linear response surface 
approximations is employed to minimize the difference 
between the simulation results and the intended design. 
A subdomain reduction scheme is applied to determine 
the subdomain size for each iteration. The procedure, 
which has been implemented in the program LS-OPT, 
is interfaced with the simulation package LS-DYNA, 
and the parametric preprocessor TrueGrid. These tools 
are used to input original tool geometry, material, and 
process parameters, identify design variables, perform 
springback simulations and output optimized tool 
geometry. The standardized NUMISHEET’96 S-Rail is 
used as a benchmark example in this study. A 
converged optimized design is obtained in four or five 
iterations. It is found that springback trends are 
consistent with changes in the die shape, thereby 
suggesting other effective strategies for springback 
compensation.  

 
Introduction 

Springback is an elastic deformation which occurs at 
the end of a sheet metal stamping process, as the 
stamped part is removed from the stamping tools. This 
phenomenon has the effect of changing the finished 
shape of the part so that it no longer matches the 
forming tools. If this shape deviation is large, it can 
cause difficulty during a subsequent assembly process, 
or render the assembled part unusable. Accordingly, it 
is important to produce parts of which the finished 
shapes closely match the designed surface. Usually 
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corrections to compensate for springback are made by 
modifying the shape of the stamping tools. 
 
Before the computer simulation became acceptable, 
trial-and-error methods were used for springback 
compensation in industry. This approach requires many 
years of die-shop experience and is also very time 
consuming – to make a modified die set could take 
months. In addition, several trial-and-error corrections 
are frequently required before adequately compensated 
parts are obtained. Accordingly, the trial-and-error 
process is very expensive, often requiring on the order 
of a million dollars to make a die that produces “good” 
parts. When new materials are used or when a new 
design is adopted, previous experience cannot be 
applied directly. The difficulties associated with the 
trial-and-error method can result in uncertainty in 
predicting costs and lead-times. 
 
Computer simulation has gained popularity in the 
stamping industry due to its speed and low cost, and it 
has been proven to be effective in prediction of 
formability and springback behavior2. However, no 
effective direct method is available to modify the die 
based on the predicted springback. Rather, an inverse 
analysis requiring an iterative scheme seems to be a 
requirement. Despite this drawback, approximate 
methods exist which can, in some cases, improve the 
tool design. 
 
The spring-forward method is based on numerical 
simulation by Finite Element Analysis (FEA). The 
method begins by performing a stamping simulation, 
from which information for the deformed part is 
obtained while it is still positioned in the closed dies. 
This information includes the geometry, and material 
stress and strain data. The method then assumes that 
subsequent springback deformation will be driven by 
material stress, and that if the stress distribution 
through the material thickness is reversed, the resulting 
springback deformation will also be in the reversed 
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direction, as compared to the actual part. Based on this 
logic, the geometry, which is obtained by springback 
analysis with reversed stress, can be used to predict 
modifications to the dies. This method is very simple to 
apply, and it is the most popular numerical method. 
However, the method suffers from two major 
shortcomings that prohibit use in many practical 
applications. These are under-cut (interference between 
the parts during the stamping process) and accuracy.  
 
The purpose of this study is therefore to investigate an 
effective iterative algorithm for springback 
compensation. An optimization method is applied to 
solve the inverse problem. Several component tools are 
required. TrueGrid 9 is used as a pre-processor to 
parametrically define geometry of the rigid tools, LS-
DYNA4 software is used as a Finite Element based 
solver and LS-OPT6 is used to guide the solution to an 
optimum. The NUMISHEET’96 S-RAIL1 example is 
used as a benchmark. 
 

Approach 
The die compensation analysis presented here uses an 
optimization method based on an iterative response 
surface scheme. Many stamping/springback simulations 
are performed during the iterative process. Using the 
parametric preprocessor TrueGrid, the user can 
introduce a set of design variables. These may include 
geometric variables, such as critical locations where 
tool elevation should be modified, important tool radii, 
and starting blank geometry.  Process variables may 
also be specified, such as drawbead restraining forces 
and binder and pad loads. 
 
Using this design variable information, LS-OPT 
automatically creates a set of stamping/springback 
models (according to an experimental design method), 
and submit several simultaneous simulation jobs. These 
jobs are distributed through a computer network since 
they execute independently and will therefore exhibit 
near perfect parallel efficiency.  
 
After collecting and processing results from the first set 
of simulations, LS-OPT predicts optimized values for 
each design variable, using a response surface based on 
the result set for each response. Using these optimized 
design variables, the next set of simulations 
(experimental design) is automatically created and 
submitted. This iterative process continues until each 
variable has been determined within a specified 
tolerance, or until a limiting number of iterations have 
been completed.  
 

Methodology 
Consider the general nonlinear optimization problem: 

 
Minimize  

                          nRf ∈xx ,)(                                (1) 
 
subject to the inequality constraints 

            
mjUgL jjj ,,2,1;)( K=≤≤ x                    (2) 

 
and simple bounds on the design variables 

 
nixxx iuiil ,,1; K=≤≤                         (3) 

 
where Lj and Uj refer to the upper and lower bounds on 
each of the inequality constraints, and xil and xiu the 
lower and upper bounds on each of the design 
variables, n is the number of design variables, and m 
the number of inequality constraints. Note that equality 
constraints can be written as two inequality constraints 
in the form of Equation 2 with Lj equal to Uj. 
 
References 5, 7 and 8 can be consulted for a detail 
description of the Successive Response Surface Method 
(SRSM). The method, as implemented in LS-OPT5 
contains a number of features that makes it robust and 
suitable for the solution of practical problems: 

 
• The D-optimal experimental design is used to best 

utilize the number of available runs. Over-
sampling of 50%5 is used to maximize the 
predictive capability of the response surfaces. 

• Linear approximations are constructed using 
linear regression on all the points of the current 
iteration. Unit weighting is used for the 
regression. 

• An adaptive domain reduction method8 is applied 
as described below. 

• An auxiliary problem that minimizes the 
maximum constraint violation6 is solved to 
enforce feasible designs. This formulation is 
effective in minimizing maximum discrepancies 
such as those resulting from springback. 

 
The SRSM method uses a region of interest, a subspace 
of the design space, to determine an approximate 
optimum. A range is chosen for each variable to 
determine its initial size. A new region of interest 
centers on each successive optimum. Progress is made 
by moving the center of the region of interest as well as 
reducing its size. Figure 1 shows the possible 
adaptation of the subregion. 
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The starting point )0(x will form the center point of the 
first region of interest. The lower and upper bounds 

),( 0,0, rR
i

rL
i xx  of the initial subregion are calculated 

using the specified initial range value )0(
ir  so that  
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where n is the number of design variables. The 
modification of the ranges on the variables for the next 
iteration depends on the oscillatory nature of the 
solution and the accuracy of the current optimum. 
 
A contraction parameter γ is firstly determined based 
on whether the current and previous designs )(kx  and 

)1( −kx  are on the opposite or the same side of the 
region of interest. Thus an oscillation indicator c may 
be determined in iteration k as 
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The oscillation indicator (purposely omitting indices i 
and k) is normalized as ĉ  where 

)(ˆ csigncc= .                    (7) 

The contraction parameter γ  is then calculated as 

2
)ˆ1()ˆ1( oscpan cc −++

=
γγ

γ .                       (8) 

The parameter γosc is typically 0.5-0.7 representing 
shrinkage to dampen oscillation, whereas γpan 
represents the pure panning case and therefore unity is 
typically chosen. 

The accuracy is estimated using the proximity of the 
predicted optimum of the current iteration to the 
starting (previous) design. The smaller the distance 
between the starting and optimum designs, the more 
rapidly the region of interest will diminish in size. If the 
solution is on the bound of the region of interest, the 
optimal point is estimated to be beyond the region. 

Therefore a new subregion, which is centered on the 
current point, does not change its size. This is called 
panning (Figure 1(a)). If the optimum point coincides 
with the previous one, the subregion is stationary, but 
reduces its size (zooming) (Figure 1(b)). Both panning 
and zooming may occur if there is partial movement 
(Figure 1(c)). The range )1( +k

ir  for the new subregion 
in the (k + 1)-th iteration is then determined by: 
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where λi represents the contraction rate for each design 
variable. To determine λi, 

)(k
id  is incorporated by 

scaling according to a zoom parameter η, typically 0.5, 
that represents pure zooming and the contraction 
parameter γ  to yield the contraction rate 

 )()( ηγηλ −+= k
ii d   (10) 

for each variable independently (see Figure 2). 
 

Example: Numisheet  96 S-Rail 
The tools and sheet-metal blank of the Numisheet 96 
springback benchmark1 problem are shown in Figure 3. 
The punch is controlled at a constant 1m/s while the 
binder is driven by a piece-wise linear force curve as 
shown in Fig. 4. 
 
Formulation of the optimization problem 
The objective of the design procedure is to maximize 
the flatness of the flange pair as if the work-piece were 
to be welded to a flat surface. To achieve this, a flat 
surface is fitted through 24 selected flange points, using 
a linear regression analysis. These points are selected at 
the flange inner and outer positions as shown in Figure 
5. The offset of a point can be computed as ie = iz - 

iZ  where iz  is the vertical coordinate of the point i 

and iZ  is the vertical position of the point projected on 
the plane. Using the selected points, two possible main 
approaches are available to formulate the design 
problem. 
  

1. RMS: Compute a root mean square (RMS) 
residual of the perpendicular offset of each 
point on the work-piece after springback, 

∑
=

24

1

2 24/
i

ie , and use it as the objective for 

minimization.  
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2. Maximum: Constrain the offset of each point:   
-E ≤ ei ≤ E, i=1,2,…24 and minimize the 
auxiliary variable E, keeping E>0. The effect 
of this formulation is to minimize the greatest 
offset after springback.  

 
Design variables  
Nine design variables were chosen, namely the radius r 
which applies to all four corners of the cross-section as 
well as the positions of 8 control points on the outer 
perimeter of the die and binders. The model was 
parameterized with TrueGrid. The control points are 
connected by straight lines to hinge points at the 
tangent line to the radius. The control points define the 
tool surfaces by controlling the z-coordinates of the 
selected points as shown in Figure 6. For the baseline 
design all the x values are zero. 
 
Note that the binder has been parameterized to assume 
the same shape as the die for a snug fit of the tools. At 
t=0 the binders and die have to be sufficiently spaced to 
prevent interference with the sheet metal blank (see 
Figs. 6 and 8). This condition is formulated in the 
TrueGrid input file. 

Simple bounds have been chosen for the variables so 
that the optimization problem formulation becomes: 

 

Min E

subject to 

-E ≤  e i  ≤ E;  i = 1, 2, …24 
-25mm  <  xj  <  25mm;    j = 1, 2, …8 

3mm  <  R  <  7mm 
 
where R is the corner radius. 
 

Results 
LS-OPT, employing Formulation 2 (maximum offset) 
was used to optimize the tool design. The problem was 
run on an HP V-class 16 processor server. 8 processors 
were utilized. 16 simulations were conducted per 
iteration. The time required for a full iteration is 3.5 
hours. About 5 to 6 iterations were required for 
convergence. Further iterations were run to attempt 
finer convergence, but the maximum offset remained at 
~0.8mm compared to the baseline 3.2mm (Figure 7a).  
 
The dots represent the simulated results using LS-
DYNA, whereas the line represents the response 
surface prediction. The history of variable 8x  (lower 
and upper bounded line in Figure 7b) suggests 
convergence by iteration 5. Note that the optimal flange 

shape is very close to a flat surface (Figs. 8a, b and c). 
Figure 9 shows the optimal tool shape that will 
minimize the surface warp. 

 
Conclusions 

From the above benchmark, we can draw the following 
conclusions: 
 
• As with all optimization procedures, the 

effectiveness of the method for springback 
compensation relies on the choice of a sufficient 
number of suitable design variables. Even with the 
choice of nine variables, the springback could 
only be reduced by about 70%. 

• Using TrueGrid, the surfaces are mathematically 
defined (not simply a mesh perturbation), and 
therefore the parametrization can be designed in 
accordance with manufacturing requirements. 

• Judging by the optimum die geometry, the 
springback behavior is consistent with small to 
moderate perturbations in tool geometry. I.e. even 
with the change of the tool geometry, the 
springback still occurs in the same direction as 
before. 

 
Drawbacks of the optimization method are as follows: 
 
• The choice of design variables depends heavily on 

the user’s experience, which makes it difficult for 
complex part design. With more powerful 
hardware and software it is conceivable that, 
initially, a large number of variables can be 
chosen from which a suitable  subset can be 
selected by means of variable screening (for 
instance using an analysis of variance (ANOVA) 
method3). 

• Optimization is expensive in terms of simulation 
time. Large, realistic sheet metal forming models 
typically have run times of days rather than hours. 
 

In spite of the drawbacks, the results are encouraging in 
terms of the accuracy of the results obtained and the 
robustness of the method. In the mean time other, 
mesh-based methods are being investigated as a means 
to accelerate the optimization phase of the procedure by 
reducing the number of variables. 
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Figure 1: Adaptation of subregion in SRSM: (a) pure panning, (b) pure zooming and (c) a combination of panning 
and zooming 
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Figure 2: Domain reduction scheme: the sub-region contraction rate λ as a function of the oscillation indicator ĉ  
and the absolute move distance ||d  

 
 
 
 
 

 
 

 
 

Figure 3: Numisheet 96 benchmark: Punch, die, binders and blank (baseline design) 
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Figure 4: Binder Force as a function of time 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5: Monitoring points on flanges (top view) 
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Figure 6: Design variables ( 1x  to 8x and Radius) 
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Figure 7: Optimization history of (a) maximum offset and (b) variable 8x  
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Figure 8a: Shape after springback (baseline tool design) 
 
 

 
 

Figure 8b: Shape after springback (iteration 3) 
 
 
 

 
 
 

Figure 8c: Shape after springback (iteration 10) 
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Fig. 9: Optimum die geometry (iteration 10) 
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